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Abstract

Nonprofit teaching hospitals contribute almost half of Health Care and Social Assistance GDP and educate more than

90% of all future physicians. Despite the importance of teaching, both policy discourse aimed at improving healthcare ef-

ficiency and existing models of nonprofit hospitals do not account for it, thereby missing an important trade-off between

the short-term delivery of health services and the long-term benefits of physician training. I leverage unusually detailed elec-

tronic health record and audit log data from the emergency department of a large, urban teaching hospital to characterize

the static costs of training across a range of granular patient outcomes and process measures. Using panel variation in patient

assignment to residents, I find that hospitals must extend length of stay for complex patients by 1% to make a resident 0.047%

faster in the future. Over the four-year program, this accrues to a reduction of about 9.4% and implies faster patient through-

put. Then, to understand how the hospital trades off throughput costs today with future benefits of more intense physician

training, I develop and estimate a dynamic model of training and care quality. Commonly-discussed payment reforms for

insurers to reduce costs may increase the shadow cost of training. This could have negative effects on the career outcomes of

graduating physicians 17 times larger than the savings for the teaching hospital, but feasible remedies such as increasing the

staffing of attending physicians by 5% lessens the penalty by 81%.
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1 Introduction

Healthcare spending is far higher in the United States than in other developed countries, yet Americans experience worse health

outcomes.1 This is despite a large fraction of care–45% of all Health Care and Social Assistance GDP in 2019–flowing through

academic teaching hospitals, widely regarded as the best hospitals in the world.2 To reduce costs and improve outcomes, both

private and public insurers have been turning to financial incentives such as payment reform, but these policies typically do

not consider the dual role of teaching hospitals of treating patients and training the next generation of physicians. While the

changes may incentivize teaching hospitals to increase care quality, they may also induce them to reduce teaching, which would

have serious consequences for future patients. Understanding how private, nonprofit teaching hospitals trade off the quantity

and quality of patient care with resident training is crucial in order to properly assess the impact of such policy changes.

In this paper, I study how nonprofit teaching hospitals allocate patients of varying complexity to residents (trainees) and

attending physicians (teaching faculty who also work independently) in order to trade off care quantity, quality, and training.

First, by leveraging detailed electronic health record and audit log data, I characterize the static costs of training: to learn,

residents must practice on patients, but because they are not yet trained, they achieve worse patient outcomes than a fully-

trained attending would. Then, to understand how the hospital trades off present training costs with benefits realized in the

future, I develop and estimate a dynamic model of physician training and care quality. I use the model to quantify the long-

run consequences for future patients caused by changes in physician training that result from changes in incentives for current

patient care quality.

I focus on emergency medicine (EM) residents at the University of California, San Francisco (UCSF). The UCSF EM

Residency’s day-to-day operations are typical of EM Residency programs. Most patients are seen by a single resident, the

trainee, who is supervised by an attending physician, a faculty member. The remaining patients are seen by attendings working

independently. Residents choose patients with assistance and guidance from attendings. Via their patient allocation decisions,

attending physicians execute the hospital’s desired trade-off between training and care quality.

The granularity of my data allow me to examine resident learning in great detail. I observe resident and attending identifiers

for each distinct, disaggregated action, which allow me to attribute not only patient-level outcomes and decisions but also the

dozens of individual decisions and actions for each patient to specific physicians. Timestamps for each action are unmasked,

which allow me to not only correctly order patients and actions during each resident’s history of work, but also to examine how

time duration to important actions evolves with experience. This combination of granularity in actions, physician identifiers,

and unmasked timestamps is rare even in health data, much less data from other industries.3

I begin by characterizing the ways in which residents learn by doing over the course of the four-year residency program. I

find that residents become much more productive in terms of total patients seen per shift. By managing additional patients

simultaneously, they go from seeing three patients per eight-hour shift when they enter the program to seeing almost eight

patients per eight-hour shift prior to graduation. Residents also improve significantly for each individual patient. For instance,

they become 20% faster at signing the first batch of medical orders. These speed gains only accrue to complex patients, which
1In 2021, the United States spent 17.8% of GDP on healthcare, compared to the OECD average of 9.6%, but life expectancy was 77.0 years compared to

the OECD average of 80.4 (Gunja, et al., 2023).
2Academic Hospital GDP: the author’s calculations using data from the BEA and AAMC. Global hospital rankings: Newsweek.com.
3Notable exceptions include Levitt, et al. (2013) and Adhvaryu, et al. (2023) in the automobile manufacturing industry.
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I define as those who are ex-ante predicted to require inpatient admission: patient length of stay decreases by 9.4% over four

years. Despite meaningful learning, I find no evidence of statistically or economically significant improvements in the 14-day

readmission rate, the key measure of ED outcome quality, or in the number of orders signed, a measure of efficiency.4

When examining heterogeneity in resident learning by patient type, I find that most of the improvement is driven by

or only present in complex patients. Therefore, I conclude that residents learn how to treat complex patients and become

faster as a result of their increased skill. Conversely, residents learn relatively little about treating simple patients. Under the

assumption that residents cannot learn about complex patients by treating simple patients, this means that the hospital is able

to choose the amount of training it provides by changing the allocation of complex patients to residents. Because the number

of examination rooms is fixed and almost always at capacity, changes in length of stay directly affect the number of patients

seen per day, the definition of patient throughput. Therefore, the hospital trades off resident training and patient throughput

when determining the optimal patient assignment.

While the throughput costs of training are paid today, the benefits accrue in the future. Consequently, a model of the

hospital’s objective function must incorporate dynamics. I develop a discrete-time, infinite-horizon model where the hospital

allocates complex patients to residents of different cohorts and attendings working alone to maximize the discounted sum of

resident training, subject to a budget constraint written in terms of patient throughput. This builds upon models of non-

profit hospital behavior by Newhouse (1970), Lakdawalla and Philipson (1998), and others. My contributions are to add a

teaching objective and the necessary dynamics to the hospital’s utility function and to estimate the parameters empirically.

The estimates allow me to simulate how training behavior might respond to counterfactual changes in the hospital’s payoffs

to higher productivity in the present.

I find that an objective function where the hospital maximizes training with respect to a lower bound of patient length of

stay can rationalize the observed patient assignment shares during the academic year. That is, the hospital allocates complex

patients to maximize the skill of graduating residents, subject to the constraint that average patient length of stay is constant

in each quarter of the academic year. I apply the model estimates to two counterfactual exercises and consider the impact

of decreased training on physician career outcomes and patient utility. Decreased training means that physicians take longer

to see each patient, but because shift lengths are fixed, they will see fewer patients. Career outcomes will suffer because EM

physician compensation is often based on the number and complexity of the patients they see.5 Patients will also suffer because

even though they will receive the same care and experience the same outcomes, they will have to wait longer if they are seen by a

less-trained physician. I compare the impact to career outcomes and patient utility without further adaptations to alternatives

where the hospital takes a mitigating action, such as loosening the care quality constraint, increasing the speed of the attendings

working independently, and increasing the speed of resident learning.

In the first counterfactual, I quantify the implications on patients of graduating residents of a reduction in training re-

quired to achieve a 2% increase in current patient throughput. A desire to increase the number of patients seen could arise from

payment reform intended to decrease patient length of stay. This would result in less revenue per patient than the status-quo,
4An “order” is any diagnostic or therapeutic procedure that is prescribed for the patient. Diagnostic orders are primarily for gathering information and

include procedures such as blood tests, echocardiograms (ECGs), and imaging (CT scans, X-Rays, etc.). Therapeutic orders are primarily for treating and
stabilizing the patient, and include pain medication, antibiotics, and surgical procedures.

5Compensation tied to Relative Value Units (RVUs) is increasingly popular for EM physicians (ACEP, 2021). RVUs are a standardized measure of the
value of a service or procedure used by the Center for Medicare & Medicaid Services (CMS) and is positively correlated with patient complexity. Therefore,
the more patients per shift or complex patients per shift seen, the more RVUs generated and the higher the compensation.
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which means that the hospital would need to see additional patients to fulfill its budget constraint.6 Assuming that residents

go on to a 30-year career, this would result in costs to future career outcomes and patients 17 times larger in present-value

than the hospital’s gains. However, investing in attending speed–most simply by staffing additional attending physicians so

that teaching responsibilities are distributed among additional physicians–such that their aggregate speed increases 5% would

greatly reduce the impact on training. With this remedy, training reductions are lowered and future costs decrease by 81%.

In the second counterfactual, I consider the impact and potential responses to a disruption in training. This mirrors the

training disruption that affected residents during the Covid-19 pandemic, when both the number and composition of patients

seeking emergency care changed.7 In the counterfactual, I assume that the disruption causes affected residents enter their final

year of training with half of the usual steady-state skill. I find that although the hospital returns to the steady-state the following

period such that there is no impact to the entering cohort, the skill of the affected cohort is reduced by 2%. A one-period 2.5%

increase in attending speed allows the hospital to train sufficiently for residents and future patients to recover 88% of the costs

relative to the no disruption baseline. As illustrated in both counterfactuals, small decreases in current training can have large

consequences for residents’ career outcomes and hence for future patients. However, straightforward and feasible actions can

greatly mediate the reduction in training.

This work contributes to several strands of literature. First, I add teaching considerations to the literature on private,

nonprofit hospitals and the literature on payment reform. Research modeling the objectives of private, nonprofit hospitals

began with the seminal theoretical contributions of Arrow (1963), Newhouse (1970), Feldstein (1971), and Pauly and Redisch

(1973). Since then, the bulk of the theoretical literature has consisted of models where the hospital maximizes the weighted

sum of profits and quality or quantity of care (cf. Lakdawalla and Philipson (1998); see Gaynor and Town (2012) for an

overview). These models have the appealing feature that nonprofit hospitals have similar objective functions to their for-profit

counterparts, but with a lower marginal cost for quality or quantity (Gaynor, 2006), and this is consistent with subsequent

empirical findings. For instance, nonprofit and for-profit hospitals are very similar in their responses to financial incentives

(Duggan, 2000), CEO compensation incentives (Brickley and Van Horn, 2015), pricing behavior with regard to competition

(Gaynor and Vogt, 2003), and provision of charitable care (Capps, et al., 2017). Similarly, the literature on payment reform

also typically does not consider teaching. This is true both in the theory (cf. McClellan, 2011) as well as the empirical evidence

(cf. Clemens and Gottlieb, 2014).

After I add a teaching objective to the nonprofit hospital’s utility function, I estimate the parameters of the theoretical

model and use it to simulate counterfactuals related to payment reform. Thus, I quantify the extent to which the hospital

reduces teaching in response to counterfactual payment policies that reduce its revenue. My findings apply to almost all future

physicians and academic medical centers: across specialties, between 83.1% and 96.6% of residency programs were affiliated with

nonprofit institutions in 2021 (Lassner, et al., 2022a; Lassner, et al., 2022b). Additionally, Kocher and Wachter (2023) find that

academic hospitals tend to do poorly on measures used in value-based payments, which means that many would stand to lose

revenue if commonly-discussed payment reforms to decrease costs and increase quality were implemented. Hence, this paper

addresses a shortcoming in the nonprofit hospital literature first raised by Reder (1965): “Still further complications exist:
6Alternatively, if the reduction in revenue per patient caused the hospital to decrease the number of patients seen, residents would see fewer patients over

the course of the program and the impact on training is identical.
7Patients delayed both routine and emergency care (Czeisler, et al., 2020).
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hospitals produce not only current treatment but also train personnel for the production of future treatment. The costs

and benefits of this training to the hospitals providing it are not well known.” I go further by not only considering the costs

and benefits to the teaching hospital itself, but also the costs and benefits to the graduating resident’s career and their future

patients.

Through studying how organizations manage within-firm learning via task allocation, I combine the literatures on task

allocation and on learning by doing. Although it has been shown that task allocation to heterogeneous workers may have large

implications for productivity (Adhvaryu, et al., 2023) and that productivity differences within sector can be large and persistent

(Syverson, 2011), the task allocation literature typically does not incorporate worker learning. Instead, workers have fixed and

exogenous skill and the firm allocates heterogeneous tasks to determine each worker’s comparative advantage, as in Adhvaryu,

et al. (2023), Bergeron, et al. (2022), Cheng (2019), Cowgill, et al. (2023), Dahlstrand (2023), and Kasy and Teytelboym (2022).

Similarly, the literature on learning by doing typically does not consider task assignment. For instance, in medicine, there is

work on resident learning in internal medicine (Chan, 2021), learning about match values of patients to procedures (Gong,

2018) and to medications (Currie and MacLeod, 2020), and learning to work in teams (Chen, 2021 and Reagans, et al., 2005).

However, although patients may differ in these settings, their arrival to the physician is exogenous.

I explicitly consider both margins, as the hospital chooses the patients to assign to each resident and task-specific resi-

dent skill evolves with the history of patients assigned due to learning by doing. The dynamic framework is similar to that

in Minni (2023), but the granularity of my data allow me to be more specific. I characterize how residents belonging to the

same department and job title differ in skill and show how the organization’s assignment of heterogeneous patients to hetero-

geneous residents optimally differs. In my setting where the learning margin dominates the comparative advantage margin,

considering the impact of learning on future productivity is crucial. If resident skill were fixed, then the empirical patient al-

location patterns would suggest that the teaching hospital is making grave errors in task assignment. In that case, reallocating

patients would lead to large, permanent improvements in productivity. However, this is not possible in practice because such

an allocation strategy would reduce teaching, resulting in much lower future average resident skill and productivity.

Finally, my findings add to the literature studying cohort turnover, the planned simultaneous exit of a large number of

experienced workers and similarly sized entry of new workers. In American teaching hospitals, cohort turnover occurs every

July 1, the date when the most experienced residents graduate and are replaced by a new class of fresh medical school graduates.

The fear that patient outcomes will suffer due to the decrease in average experience is known in the United States8 as the “July

Effect.” I corroborate Hughes (2017), Wei, et al. (2019), and the recent literature that finds an absence of a significant drop in

quality in July. I extend the literature by showing that not only patient outcomes but also many process measures related to

productivity and efficiency are similarly unchanged on average across July 1. I also add to the findings of Song, et al. (2016) and

Hausknecht and Trevor (2011) and describe another method the teaching hospital uses in order to avoid a disruption in output.

Notably, this method, strategic patient allocation, is a choice rather than an investment in infrastructure and supervision.

The rest of the paper proceeds as follows: Section 2 gives more details on residency in general and emergency medicine

residency at the teaching hospital from which I obtain data. Section 3 describes the electronic health record and audit log

data. Section 4 presents empirical results that documents the ways in which residents learn by doing. Section 5 introduces
8In the United Kingdom, this occurs on the first Wednesday in August and is known as both “Black Wednesday” and the “killing season.”
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the dynamic framework. Section 6 discusses estimation, and Section 7 provides results. Section 8 motivates and presents

counterfactual exercises that explore separately the hospital’s response to a change in the shadow cost of training and to a

one-time disruption to resident training, as well as the effectiveness of mitigating actions it could take. Section 9 concludes.

2 Medical Residency Background

In the United States, graduates of medical school are required to complete a residency program in order to practice medicine

independently. Residency is in a specific predetermined specialty (for example, Radiology, Dermatology, Obstetrics and Gyne-

cology, and Emergency Medicine); medical school students apply to and are accepted to a single program-specialty.9 Matching

residents to program-specialties is done centrally and is a well-known application of the Gale-Shapley algorithm. Programs

last between three and seven years, depending on the specialty, and some medical students choose complete a fellowship after

their residency ends to further specialize and become for example Cardiologists and Oncologists, or to sub-specialize, for in-

stance in Pediatric Critical Care or Cardiothoracic Surgery. Notably, residency training is not only for learning facts but also

for developing “habits, behaviors, attitudes, and values that will last a professional lifetime” (Ludmerer, 2015).

The focus of this study is Emergency Medicine Residency at the University of California, San Francisco (UCSF). At UCSF,

EM Residency is a four-year program.10 The setup of the program and the day-to-day routine is typical of EM Residency

Programs. The majority of patients are seen by a single resident, the trainee, who is supervised by an attending physician, a

faculty member. The remaining patients are seen by attendings working independently. Work is shift-based, meaning that

once physicians are off-shift, they are no longer responsible for the patients they cared for during their shift. At UCSF, both

residents and attendings work eight-hour shifts. The schedule is determined prior to the beginning of the academic year and

determined exogenously. All residents and attendings will work day, night, and weekend shifts; there is no sense that seniority

or other factors permit attendings or residents to avoid working less-desirable shifts. Teams–groupings of attendings and

residents–are ad-hoc, meaning that they change from shift to shift, and throughout the course of the year, all residents will

work with all other residents and all attendings.

To be clear on terminology, I will use “resident” to refer to the emergency medicine physician trainees who are the focus of

this study. At any point of time, EM residents at UCSF must belong to one of four different cohorts–this is defined as the year

that they enter the program. Consistent with nationwide averages, I do not observe any attrition or leaves of absence.11 “At-

tendings” or attending physicians are faculty members of the medical school, typically on the tenure track, who both supervise

residents and see patients independently. I will use the terms “physician” and “provider” interchangeably to refer to residents,

attendings, and nurse practitioners, who are also seeing patients independently but do not have supervisory responsibilities.

I will use the term “care team” to refer to all providers, nurses, and other medical and non-medical staff (e.g. social workers)

who interact with the patient. An “order” is any diagnostic or therapeutic procedure that the care team prescribes for the pa-

tient. Diagnostic orders are primarily for gathering information and include procedures such as blood tests, echocardiograms
9Students apply to multiple programs but typically a single specialty: among students who successfully match, the average number of specialties ranked

is 1.2 (AMA, 2019)
10Most EM Residency programs are three years; four-year programs tend to be located at prestigious and highly-ranked programs such as Johns Hopkins,

Massachusetts General Hospital (Harvard Medical School), UCLA, and the University of Washington.
11The median EM Residency attrition rate from 2010-2020 is 0.83% (Wang, et al., 2022)
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(ECGs), and imaging (CT scans, X-Rays, etc.). Therapeutic orders are primarily for treating and stabilizing the patient and

include pain medication, antibiotics, and surgical procedures.

The typical workflow in the ED is depicted in Figure 1. When a patient arrives, a triage nurse will interview them, take

their vital signs, and estimate their acuity using a five-point scale called the Emergency Severity Index (ESI). This is done

independently from the physicians who will subsequently care for the patient. The patient will then return to the waiting

room. A resident who is available will select a patient from the waiting room with guidance from the supervising attending.

The resident will independently examine the patient and present their findings and plan of care to the attending. The attending

will examine the patient, also typically independently, and confer with the resident. An agreement on the plan of care is reached

and a set of diagnostic and therapeutic orders are signed. Order results are reviewed, typically independently, and if necessary,

predetermined follow-up orders are sent and additional examinations and revisions to the plan are agreed upon and executed.

The resident and attending will then make a disposition decision: admit the patient to the hospital for additional care or

discharge them home. In the event the patient was discharged home, there is a chance they will return to the ED within 14

days. This is called an ED Readmission and is suggestive that the physicians overlooked something important.

Care quality in the ED is multi-dimensional. Broadly, once the patient is stabilized, the goal is to quickly and efficiently

assess the patient’s condition. The disposition decision is the primary goal of the ED: is the patient healthy enough to send

home, or do they need to remain in the hospital for further care? Therefore, the primary measure of ED quality is the accuracy

of the disposition decision. A common measure used to evaluate the accuracy of this decision is the 14-day readmission rate

(cf. Chan, 2018): among patients who were deemed healthy enough to discharge, at what rate did they return to the ED within

14 days? A second category of quality relates to speed. Doing things faster with no loss in accuracy is also important. Speed is

utility-enhancing for patients because they spend less time suffering from their complaint and being in the hospital. It is also

efficient for the hospital because it frees up the examination room for the next patient, thereby increasing patient throughput.

Important measures of speed I will consider include process measures such as time to first order and patient length of stay in

the ED. Finally, I will consider resource utilization as a measure of efficiency. Resources are both costly orders (“materials”) as

well as labor in the form of supervision and consults by specialists, and being able to achieve the same patient outcomes with

fewer orders or consults represents higher efficiency.

3 Data and Sample Construction

3.1 Data

This research leverages highly granular electronic health record and audit log data from UCSF. The data cover the universe of

ED arrivals for patients ages 18-90 over a 24 month period from 2017 to 2019. In total, there are 85,990 patient encounters.12

In essence, these data record every interaction the physician has with a computer, which is used for gathering information

(reading past clinical notes and order results), producing a diagnosis and treating and stabilizing the patient (sending, revising,

and canceling orders), and recording information (writing the clinical note summarizing the patient’s condition and what was
12The unit of observation is an encounter rather than a patient because the same patient may visit the ED multiple times during the sample period. When

this occurs, they are assigned a new encounter_id for each visit but retain the same patient_id.
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Figure 1: Workflow in the Emergency Department

Patient Arrives

Severity Est imated

Back to Wait ing Room

Patient to Exam Room

Pat ient  Movement Resident  Act ions At tending Act ions

Patient Select ion

Examine Patient

Examine Patient

Resident Presents Findings to Attending

Confer and determine plan of care

Sign Orders

Review Results

Disposit ion Decision

Admit to 

Inpat ient

Discharge 

Home

Readmission

Patient leaves ED

?

Pre-determined follow-up

Unexpected Changes

Notes: This flowchart illustrates of the typical workflow in the emergency department. Actions and outcomes are divided into three cate-
gories. Left of the timeline are patient movement. To the right of the timeline, actions are classified into those done by residents (left side),
attendings (right side), or together (spanning the width of the section). The dotted arrows originating from Review Results indicate that
these actions are done only when deemed necessary. Finally, after the disposition decision is made, if and only if the patient is discharged
home, they may feel it is necessary to return to the ED within 14 days, which is called an ED Readmission.
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done in the ED).

The data contain an entry for every instance that any provider interacts with an order. For each of these order actions,

I observe patient and encounter identifiers, actual, unmasked timestamps for when each order was signed, completed (or

canceled), and results became available (when applicable). I also observe identifiers for both the physician who signed the

order (typically a resident) and the physician who authorized it (must be an attending). These are both unusual features.

For physician identifiers, most medical datasets only contain the data of the attending physician, as they are the entity who is

financially and legally responsible. As for timestamps, most datasets either only have the date of the encounter or have detailed

but de-identified data that preserves the time between actions but scrambles the start dates. Both of these elements are crucial

for this analysis as otherwise I would not be able to attribute residents to patients in the correct order and would not be able

to examine the speed and duration of important actions.

I also observe the consumption and production of information. Specifically, I observe the time, duration, and provider

for each order result view (e.g. reading the radiologist’s report for an MRI; viewing the numerical results of a blood test) and

the same information for clinical notes that contain other physicians’ impressions of the patient.13 I also observe the time and

duration of edits to the patient’s clinical note from the current encounter, as well as the character length of the note. I do not

observe any note content.

For patients, in addition to typical covariates such as age, gender, race, and diagnosis codes, I also observe a set of character-

istics that I call “ex-ante” characteristics. These are characteristics that are exogenous to the care team who will subsequently

care for the patient. Examples include the patient’s chief complaint that induced the ED visit, the acuity level assigned to them

by the triage nurse, and indicators for abnormal vital signs upon entry to the ED (ex. abnormal pulse). Contrast these with

measures such as the final diagnosis, ED disposition, or patient’s length of stay in the hospital, which may be endogenous to

the composition of the care team and most crucially, resident experience. In the analysis, I use the set of ex-ante and immutable

patient characteristics (things that cannot be affected by care, such as the patient’s age, gender, and race) to divide patients into

those who are ex-ante predicted to require inpatient care and those who are predicted to be safe to discharge home. For sim-

plicity, I refer to these patients as “complex” and “simple.” The predictions have high predictive power and fit the observed

patterns of inpatient admission well. See Appendix A for more details on the construction and fit of the prediction.

For providers, I observe a set of basic covariates. I observe the role of all providers: resident, attending, nurse practitioner,

etc. I observe the specialty for attendings and NPs only and infer the specialty of residents based on the specialties of the

attendings who most frequently authorize their orders, which I assume are their most frequent supervisors. Residents use

different templates in the system if they are in their first two years compared to years thereafter. I also observe their start and

end dates if they occur within the sample period; with these two pieces of information I infer the cohort of each resident.

In a separate dataset, I have the administrative schedules for both providers and residents for calendar year 2018. I use this

data to validate my sample construction and to provide some sample statistics on the number of shifts worked by EM and

non-EM residents. I am unable to match the names in the schedule with the provider identity numbers in the EHR data.
13Both order result and note views can be from “historical” visits outside the sample period.
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3.2 Sample Construction

I focus on EM Residents and attendings. These providers make up a minority of physicians who ever work in the ED but work

a majority of the shifts and see a majority of the patients, especially among complex patients. The reason I restrict the analysis

to EM Residents is because the ED may have other learning objectives for the residents from other specialties who make short

rotations through the ED as part of their training. For instance, Internal Medicine residents complete a three-week rotation

in the ED. Not only is this time period is too short for the ED to reap the benefits from training them, but the residents also

may have a different set of baseline skills compared to EM residents.14 Because the incentives and constraints for training other

residents may differ from those for training ED residents, I choose to exclude them from my analysis.

During the sample period, there were 15 residents in each cohort of EM residents. I am unable to identify them based

on names or identifiers so I classify them using the total number and fraction of orders that were signed in the ED context

(as opposed to inpatient or outpatient). For residents belonging to each cohort, I define as EM residents those who sign over

80% of their orders in the ED context and are also one of the top 30 residents in terms of number of orders signed. The

discontinuities in at least one of these measures are generally quite sharp. I show two examples in Appendix Figure A1.

Table 1 shows the breakdown of the residents who work in the ED in terms of the number of individuals, shifts worked,

and patients seen. My algorithm slightly under-identifies the true number of EM residents, identifying 83 residents instead

of the expected 90 in the six cohorts in my data. In calendar year 2018, where I am able to validate my resident selection by

comparing shift summary statistics with administrative shift data, I also under-match slightly, identifying 67 of 75 residents.

Perhaps as a result, I find that they work 60% of the shifts rather than the 69% as suggested by the 2018 administrative data. As

expected, the majority of patients are seen by EM residents: almost 70% in the two years of EHR data.

Table 1: Sample Selection: Residents

Residents Shifts (EHR data) Shifts (admin) Patients (EHR data)
All Residents 610 9,340 54,217
EM Residents 83 5,802 37,463
EM Residents (%) 14% 62% 69%
2018 Residents 389 4,512 4,012 26,775
2018 EM Residents 67 2,725 2,765 18,044
2018 EM Residents (%) 17% 60% 69% 67%

Notes: This table shows basic sample statistics on the set of residents who work in the emergency department. I focus on EM Residents,
who make up 14% of all residents who work in the ED during the two-year sample based on my classification. They work 62% of the shifts
worked by residents and see 69% of all patients seen by residents. I compare the share of shifts with the share of shifts in the administrative
data that cover one calendar year and find that EM residents worked 69% of all shifts worked by residents, which compares favorably to the
60% I classify in the data.

Table 2 Panel (a) shows sample selection for patient encounters. Over the two years of data, there are a total of 85,990

patient encounters. I first exclude encounters where the patient left early or against medical advice, or passed away in the ED,

so that I can be sure that I capture the full extent of the physician’s process rather than some interrupted version. These total

roughly 7.7% percent of all encounters. Then, I exclude the patients who the triage nurse categorized upon arrival as being

the most urgent (Emergency Severity Index category 1) or the least urgent (ESI 5), who together represent about 2.3% of all
14For instance, they likely completed a different set of clinical rotations while in medical school and focused their research on different topics.
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arrivals. This is because the ESI 1 patients represent “codes” where the entire ED team on staff contributes to the patient’s care,

so it is an exception to the usual resident-attending pairing and may not represent cases where the resident is directing care.

ESI 5 patients are the other extreme: they are cases where the patient does not need urgent medical care, such as patients with

a chief complaint of “Medication Refill” and also do not represent resident learning about urgent patients. Next, among the

remaining encounters, I am unable to identify the physician in charge (“Primary MD”) for 6.6% of the patients. The next step

results in our first sample of interest: EM Residents and Attendings see a total of 65.3% of all patients. Finally, EM Residents

see 40.4% of all patients, or about 62% of the patients assigned to EM Residents or Attendings. Panel (b) reveals that the 62% of

patients are not evenly distributed among patient types: residents see a greater share of complex patients (about 77%) relative

to simple patients (about 58%) by two measures of ex-ante patient complexity.

Table 2: Sample Selection: Encounters

(a) Encounter Selection

Number or Percent of Patients
All ED Arrivals 85,990
Did not Leave Early 92.4%
Did not Pass Away 92.3%
Triage Nurse ESI 2, 3, or 4 90.0%
Primary MD Identified 83.6%
Seen by Attending or EM Resident 65.3%
Seen by EM Resident 40.4%

(b) Resident Encounters by Complexity

by Predicted Admission by Triage Nurse ESI
All Patients Complex Simple Complex Simple

All with Primary MD identified 71,892 17,916 53,976 14,935 56,957
Seen by Attending or EM Resident 78.1% 73.1% 79.7% 74.1% 79.1%
Seen by EM Resident 48.3% 56.0% 45.8% 58.0% 45.8%
Percent EM / Attending or EM 61.8% 76.6% 57.5% 78.3% 57.9%

Notes: This table shows the sample selection of patient encounters. Panel (a) shows the steps of sample selection. Patients who Leave Early
are those who have leave without being seen, against medical advice, or pass away in the ED. Triage Nurse ESI 2, 3, or 4 are the three middle
categories of the triage nurse’s assigned Emergency Severity Index. The two excluded categories are extremely severe cases (“codes”) where
the entire ED team contributes to the patient’s care, or cases where the patient does not need urgent care, such as patients with a chief
complaint of “Medication Refill.” Primary MD Identified means I was able to identify who the primary provider for the patient was. Panel
(b) shows the breakdown of the last three steps of Panel (a) by two ex-ante measures of “complex” and “simple” patients. The first is the
primary measure I use in the paper: by a prediction of inpatient admission using only ex-ante and immutable patient characteristics. The
second is by the triage nurse’s evaluation: ESI category 2 vs. 3 and 4. The bottom row of Panel (b) shows the percent of patients of each
patient type seen by EM residents relative to the patients seen by EM Residents and Attendings and reveals that residents see a greater share
of complex patients than of simple patients.

These tables show that EM residents are doing a plurality of work in the ED and a majority of the work for complex

patients. It is not the case that they are only being used as low-cost labor by seeing only the low-risk patients they know how

to manage and leaving the complex ones for attendings to care for. In the following section I show how patient outcomes,

process measures, and the allocation of complex and simple patients vary with resident experience.
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4 Documenting Resident Learning

I begin by documenting the ways that residents improve during the four year program. I first show measures related to overall

productivity. Then, I present results on within-patient improvement both graphically via binned scatterplots and in regression

form with additional specifications and patient heterogeneity and perform robustness checks. Third, I present evidence that

when making patient allocation choices, the hospital is aware of the trade-offs between care quality and learning. Finally, I

relate the findings to the literature on cohort turnover and summarize the important takeaways.

4.1 Overall Productivity: Patients Seen per Shift

The number of patients each resident sees per shift is a basic measure of productivity. Since shifts are always eight hours

long regardless of experience, this measure is analogous to each resident’s units produced per hour. Figure 2, Panel (a) plots

the relationship between the average number of patients seen per shift seen by residents and resident experience in months.

Patients are grouped by their ex-ante predicted complexity: whether or not they are predicted to be admitted to inpatient care.

Panel (b) depicts the growth in the average number of patients managed per hour of each shift for residents of each month in

the program. It shows that residents only average about 1.5 patients per hour when they begin residency and improve such that

they are managing about 3 patients per hour by the fourth year of residency. Comparing the two panels reveals that the growth

in patients seen per shift is mainly in the “simple” category of patients and that it appears to be driven by managing additional

patients in parallel rather than large increases in speed per patient, a fact corroborated in Figure 3. Overall, residents make

significant gains in productivity, going from seeing about three patients per shift in the first month of the program to seeing

almost eight patients per shift in the month prior to graduation. However, growth in this productivity measure is mainly in

simple patients. Differences between complex and simple patients will be a recurring theme in this section.

Figure 2: Patient Load Breakdown

(a) Patients Seen per Shift by Predicted Admission
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(b) Simultaneous Patients Managed
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Notes: These figures show the evolution of patient load over the 48 months of the EM residency program. Panel (a) shows the breakdown
of total number of patients managed during the shift. Patients are grouped by their ex-ante predicted complexity: whether or not they are
predicted to be admitted to inpatient care. Panel (b) depicts the average number of patients managed per hour of each shift for residents of
each month in the program. Comparing the two panels reveals that the growth in patients seen per shift is mainly in the “simple” category
of patients and that it is driven by managing additional patients in parallel rather than large increases in speed per patient, a fact corroborated
in Figure 3.
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4.2 Within-Patient Quality, Efficiency, and Productivity

While they indicate significant improvement, the previous set of results do not capture within-patient differences with experi-

ence. Therefore, the results may either understate or overstate the degree of improvments in productivity. For example, if the

quality of care also increases with experience even as residents are seeing more patients per shift, then the results understate

productivity improvements. On the other hand, if quality suffers with the additional patient load then the results overstate

productivity improvements. This subsection investigates the evolution of a variety of patient-level measures of quality and

efficiency with resident experience and finds that learning how to treat patients mainly occurs in complex patients.

I begin with a graphical depiction of resident improvement via binned scatterplots of various patient outcomes and process

measures in Figure 3. For each outcome of interest, I regress both the outcome and resident experience on selected patient

covariates Pi and show a binned scatterplot of the residuals. I add the overall outcome mean back to the outcome residuals

so that the values are more easily interpretable. The slope and standard error of the regression line displayed correspond via

Frisch-Waugh-Lovell to the coefficient on experience β in the regression given by

Yi = βExperiencej(i) + P ′
iγ + εi (1)

In this regression, i indexes encounters, and Experiencej(i) is the experience of resident j who is in charge of patient i in

years. In the binned scatterplots, I select the ex-ante and immutable patient characteristics Pi by hand. The covariates include

fixed effects for 10-year bins of patient age, the Charlson comorbidity index, Medicaid status, nonwhite, an interaction of broad

chief complaint category and triage nurse assigned emergency severity index, an interaction of indicators for if the encounter

began on a weekday and during business hours, and continuous ex-ante predictions of patient complexity and its square from

Chu, et al. (2023). The residency program lasts four years, but because my data span two years, I observe each resident for a

maximum of two years. Hence, the data are an unbalanced synthetic panel.

The various panels of Figure 3 break down resident learning into various components. I first examine improvements

in two key measures of care quality and efficiency. I observe in Panel (a) that there does not appear to be a statistically or

economically significant decrease in 14-day ED Readmissions, suggesting that conditional on patient observables, the accuracy

of the disposition decision made by inexperienced and experienced residents is similar. Similarly, in Panel (b), I find that there

is also no relationship between experience and the number of costly diagnostic and therapeutic resources signed. Therefore, I

conclude that neither patient outcomes nor efficiency in costly resource utilization is a cost of training.

But does that mean that residents do not learn? Panels (c) and (d) refute this. Panel (c) plots the fraction of orders signed

by the resident in charge of the patient, rather than the supervising attending, other attendings such as consulting physicians

from other specialties, nurses, or other residents. This measure of resident independence increases linearly with experience,

and the magnitude over four years is approximately 10% of the mean of 59.5%. This implies that with experience, residents gain

independence and are less apt to leave out important orders. Panel (d) plots a measure of speed: how long does it take providers

to sign the first order after the patient enters the examination room? Over four years, this decreases approximately 15% of the

mean of about 34 minutes. This means that residents become faster at discerning the patient’s underlying condition through

history-taking and physical examination and determining which set of orders are appropriate for treating and refining the
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Figure 3: Learning over Time: Binned Scatterplots

(a) 14-day ED Readmission Rate
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(b) Medical Orders Signed
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(c) Fraction Orders Signed by Resident
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(d) Time to First Order (Minutes)
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(e) Log(Length of Stay): Complex Patients
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(f ) Log(Length of Stay): Simple Patients
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Notes: These figures are binned scatterplots with 24 bins of patient outcomes and process measures of interest on the residual of years
in the program by the resident in charge of the patient. The sample is all sample patients seen by EM residents unless otherwise specified
(Panels (e) and (f)). Residuals are after removing selected patient covariates. The coefficient and standard error, clustered by physician, are
displayed. The 14-day ED readmission rate is the rate at which patients who are discharged home from the ED have a repeat visit within 14
days. Medical Orders signed is the sum of diagnostic and therapeutic orders signed in the ED. Fraction Orders Signed by Resident is the
fraction of medical orders that are signed by the resident, rather than the attending, nurses, or other residents assisting. Time to First Order
is the time between the moment the patient is moved from the waiting room to an exam room and the time that the first medical order is
signed. Log(Length of Stay) is the natural logarithm of the hours the patient spent in the ED under the care of EM providers. It is split into
“complex” and “simple” patients based on an ex-ante prediction of inpatient admission. See text for more details.
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working diagnosis. Becoming faster and more thorough are important clinical skills that affect care quality after the resident

graduates and begins practicing independently.

I find that the increases in independence and speed only flow through to the total length of stay for complex patients.

Panels (e) and (f) show the evolution of the natural logarithm of the number of hours the patient spends in the ED with

resident experience. The patient sample is split by whether I predict that they were admitted to the hospital (“complex”)

or were discharged home (“simple”). While there is no change for simple patients, there is is a significant and meaningful

improvement for complex patients. Under the assumption of linear learning, the four-year improvement of 9.2 log points is

almost 25% of the standard deviation of log(length of stay) conditional on patient covariates and is relative to a mean length

of stay of about 6.6 hours.15 Therefore, experience greatly decreases time spent in the ED for complex patients but has limited

effects for simple patients. The difference in learning for simple and complex patients motivates examining heterogeneity for

the other process measures and the design of the structural model.

The previous findings are supported by the regression results in Table 3. The regression specification differs slightly from

the binned scatterplots in Figure 3. First, the regressor of interest is the natural logarithm of days in the program. I tend to

prefer this over the linear specification because the literature generally finds that learning exhibits diminishing returns (cf.

Benkard, 2000 and Levitt, et al., 2013). Second, I include resident fixed effects in all regressions to focus on within-resident

learning. With these fixed effects, estimates are not subject to bias from individuals in earlier cohorts (e.g. starting residency

in 2015) being inherently “better” or “worse” than individuals in later cohorts (e.g. starting residency in 2018). Third, when I

include patient covariates, I select them using the post-double-selection LASSO method of Belloni, et al. (2014). Inspection

of the covariates chosen by the algorithm reveal that they are more sparse than the set that I manually selected, and tend to

include indicators for the number of abnormal vital signs upon entry, which I did not include in the binned scatterplots.

Table 3 Panel (a), shows that the results in Figure 3 are generally robust to the more sophisticated selection of patient

covariates and the inclusion of resident fixed effects. Notably, as in the figures, the log(Length of Stay) relationship is only

statistically and economically significant for complex patients. In Panel (b), I examine heterogeneity by patient complexity for

the other process measures.16 For the natural logarithm of medical orders signed, I find that the small positive effect in Panel

(a) masked offsetting effects for complex patients and simple patients. One potential explanation, supported by the results

on diagnostic orders shown in Appendix Table A2, is that with experience, residents obtain less diffuse priors for complex

patients, but they substitute effort with costly resources for simple patients in order to save time.17 Next, we observe that the

increase in fraction of orders signed by the resident is also primarily driven by improvements for complex patients, but that

decreases in the minutes to the first order are proportionally similar for complex patients compared to for simple patients.

Overall, these results suggest that the bulk of the learning that occurs during the residency relate to learning how to treat

complex patients and that there is relatively little learning for simple patients.

15The reason the mean for complex patients is less than the mean for simple patients is because for admitted patients, I end the the length of stay at the
moment the patient is confirmed for inpatient upgrade. At that moment, the patient may not leave the ED, but the ED care team’s involvement has concluded
and the patient is now the responsibility of the admitting department, whether it be cardiology, surgery, hospital medicine, or something else. Unfortunately,
there is no consistent analogous marker for discharged patients (discharge orders are inconsistently signed and disappear entirely midway through the sample
period). Both relationships are similar if I instead use total time in the ED for both sets of patients.

16By definition, ED Readmissions are only possible for discharged patients, so a breakdown by complexity is not appropriate.
17This finding may facilitate the increase in managing additional patients simultaneously with experience shown in Figure 2.
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Table 3: Learning over Time: Regressions

(a) Main Results

Readmissions log(Medical Orders) Frac. Signed by Resident log(Mins to 1st Order) log(Length of Stay, Hours)

log(Days in Program) -0.001 0.002 0.039** 0.024** 0.010** 0.013*** -0.117*** -0.101*** -0.055*** -0.048*** 0.002 0.004
(0.004) (0.004) (0.016) (0.011) (0.005) (0.004) (0.028) (0.016) (0.015) (0.015) (0.011) (0.009)

DepVar Mean 0.140 19.307 0.596 39.485 6.669 7.653
Patient Type Discharged All All All Complex Simple
Controls X X X X X X
Obs 22,863 22,824 31,775 31,712 31,775 31,712 27,384 27,330 8,930 8,906 22,863 22,824

(b) Resident Progress by Patient Heterogeneity

log(Medical Orders) Frac. Orders Signed by Resident log(Minutes to 1st Order)

log(Days in Program) -0.040*** -0.041*** 0.047** 0.052*** 0.025*** 0.024*** 0.008 0.007* -0.129*** -0.118*** -0.102*** -0.094***
(0.014) (0.015) (0.020) (0.012) (0.008) (0.006) (0.005) (0.004) (0.040) (0.033) (0.030) (0.018)

DepVar Mean 29.138 15.467 0.488 0.638 27.626 43.931
Patient Type Complex Simple Complex Simple Complex Simple
Controls X X X X X X
Obs 8,913 8,889 22,862 22,823 8,913 8,889 22,862 22,823 7,467 7,448 19,917 19,882

Notes: Regressions of selected patient outcome and process measures on various measures of resident experience. The sample consists of all patients seen by EM residents. Every regression
includes provider fixed effects. Standard errors are clustered by physician. Patient Controls are chosen from the set of immutable and ex-ante patient covariates using the post-double-selection
LASSO method of Belloni, et al. (2014) and differ from the covariates used in the binned scatterplots. The 14-day ED readmission rate is the rate at which patients who are discharged home from
the ED have a repeat visit within 14 days. By definition, the measure only exists for discharged patients. log(Medical Orders) is the natural logarithm of the sum of diagnostic and therapeutic
orders signed in the ED. Frac. Orders Signed by Resident is the fraction of medical orders that are signed by the resident, rather than the attending, nurses, or other residents assisting. log(Mins
to 1st Order) is the time between the moment the patient is moved from the waiting room to an exam room and the time that the first medical order is signed. This value is missing if the first
order is signed prior to being roomed; see Appendix Table A1 for the extensive margin. log(Length of Stay) is the natural logarithm of the hours the patient spent in the ED under the care of EM
providers. It is split into “complex” and “simple” patients based on an ex-ante prediction of inpatient admission. Dependent variable means are listed, always in levels. Panel (b) shows progress
split by ex-ante predicted patient complexity. See text and Appendix A for additional details.
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4.2.1 Robustness

The main threat to the within-patient analyses is that they are biased by selection on unobserved patient characteristics. Specif-

ically, if more experienced residents are assigned patients who are unobservably more complex, my estimates will be biased

towards zero. Similarly, if they are assigned unobservably less complex patients because they are seeing additional patients

simultaneously, then my estimates will be larger in magnitude than the true improvement with experience. I believe this is

unlikely in my setting for two reasons. First, providers observe a limited amount of information when allocating patients, and

I am able to control for almost all of these covariates. The main thing I do not observe are the patient’s appearance and answers

to brief questions, but to the extent that is captured in the triage nurse’s estimation of the patient’s severity, I do control for it.

Second, other than for the first six months of the program, observable patient severity averages per patient are stable across the

four years of experience as can be seen in Appendix Figure A2, Panel (b). Therefore, in terms of ex-ante patient assignment

patterns, I believe I sufficiently control for selection on observables, and that unobservables are of limited importance.

It is not entirely straightforward to confirm this formally. I would like to perform the test proposed in Oster (2019) and

Altonji, et al. (2011), but that requires the use of a measure of model fit such as R2. Because I use LASSO to select covariates,

the reported R2 is not correct because it does not take into account uncertainty in covariate selection. I proceed regardless of

this limitation and use the R2 as if there was no uncertainty. This means that the test results will be biased towards rejecting

the null of no treatment effect due to omitted variables bias because I will be overestimating the improvement in model fit

from including observable covariates.

With these caveats in mind, results suggest that the size of omitted variables bias in this context are small. For instance,

when considering length of stay for complex patients, the improvement inR2 from going from a specification with only physi-

cian fixed effects to the covariates chosen by post-double-selection is from 0.0206 to 0.1057, and the coefficient on experience

decreases in magnitude from -0.055 to -0.048. If I assume that the maximum R2 that can be explained by the model is 0.3 (in

other words, outside “randomness” such as ED congestion explains the other 0.7), then if the true effect was zero, the omitted

variables would need to have 3.21 times the amount of selection as the observable factors to produce the results I obtain. If

I assume the maximum R2 is 0.5, then the omitted variables would need to have 1.66 the amount of proportional selection,

whereas if the maximum R2 is 1, then the omitted variables would need to have 0.75 the amount of proportional selection to

obtain the results I have if the true effect is zero. Based on the qualitative arguments based on the context I outlined previously

that limit the potential for unobserved selection, I find these magnitudes to be unlikely, especially if the maximum R@ is lim-

ited by factors orthogonal to resident experience such as waiting time for imaging and lab results. Based on the qualitative and

quantitative evidence, I conclude that selection on unobservables should not meaningfully affect my results.

4.3 Hospital Awareness of Trade Off between Quality and Learning

Because learning is mostly in complex patients, attendings can control the trade-off between care quality and training by chang-

ing the allocation of complex and simple patients to residents of varying experience and themselves. But are attendings aware

of the trade-off? The answer appears to be yes. Figure 4 plots the average fraction of complex patients seen by individual

providers during each shift across the four quarters of the academic year. This figure illustrates three interesting facts. First,

the fraction of complex patients seen increases from 10% to 15% during the first year (solid red line), corroborating the results of
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Figure 2. Second, again in line with Figure 2, the fraction seen by the other three cohorts of residents is relatively stable during

the year (dashed blue line). Third, it is attendings who “pick up the slack” in July through September and see the patients that

the first year residents are unable to treat (dotted and dashed purple line).18

Figure 4: Average Fraction of Complex Patients Seen, by Role
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Notes: This figure depicts the average fraction of complex patients seen per shift, by role, for each quarter of the academic year. Complex
patients are those with the highest values of ex-ante predicted admission. “Senior Residents” are the average shares of residents in years 2-4.
This choice is informed by the results in Figure 2, Panel (b) and Appendix Figure A2, Panel (b), where the share of “Most Urgent” and
Admitted patients does not continue growing after the first year. The figure shows that first year residents see more patients as they gain
experience, but that the patients they are not able to see in academic quarter 1 (July through September) are seen by attending physicians
rather than other residents. Not shown is that there are no meaningful differences in provider staffing or arriving patient composition across
the academic year.

Next, I provide suggestive evidence that attendings are aware of the trade-off on a more micro level via correlational logit

regressions. In these regressions, I regress the probability that a first year resident is assigned a complex patient on the number

of complex patients currently being seen in the ED, the number of patients in the waiting room, fixed effects for the patient’s

chief complaint, and other characteristics of the physicians on staff and the index patient. Results are in Appendix Table A4.

I find that first year residents are much less likely to be assigned complex patients when there are many patients in the waiting

room. As the number of patients in the waiting room increases from the 25th to 75th percentile, the probability that first

year residents are assigned a complex patient decreases by 15%. To conserve space, I do not show the coefficients on patient

chief complaint, but these estimates are meaningful. I find that ceteris paribus, first year residents are much more likely to be

assigned patients from more common chief complaints (e.g. chest pain, abdominal pain, and shortness of breath) compared

to the pooled “less common” category.

Taken together, these findings suggest that the hospital is aware of the costs of teaching because they teach less when the

costs are higher due to congestion, and that the hospital is aware of the benefits because they first train residents in the patients

they are most likely to encounter.
18Indeed, there is no difference in the composition of arriving patients across the year.
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4.4 Summary of Resident Learning

Based on the combination of the results on shift-level efficiency and within-patient outcomes, I conclude that EM residents

improve in two dimensions. The first is in medical skill for individual patients: the processes of gathering, synthesizing, and

interpreting information about each patient’s underlying state and signing the correct set of orders given that information.

Table 3 Panel (b) shows that these improvements are primarily for treating complex patients. The second is improvement in

“bandwidth” or cognitive capacity: residents become able to manage additional patients simultaneously. Most of the growth

in capacity is for less complex patients, as shown in Figure 2. I am primarily interested in the improvement in medical skill for

individual patients, which I believe is a more appropriate application of the learning by doing and task allocation frameworks.

Because the majority of improvement in within-patient medical skill is for complex patients, attendings can affect the trade-

off between care quality and training by changing the allocation of complex and simple patients among residents of varying

experience and themselves.

The within-patient results relate to the literature on cohort turnover in residency programs. Hughes (2017), Wei, et al.

(2019), and the recent literature finds an absence of a significant drop in care quality in July, when the most experienced res-

idents graduate and are replaced by new medical school graduates. In my findings, this follows from the lack of a gradient

with respect to ED readmissions and resource utilization: if inexperienced residents achieve the same outcomes as experienced

residents, there cannot be a drop-off in quality. But what about complex patient length of stay? I show that there is a notable

decrease in length of stay with respect to resident experience. Therefore, outcomes for individual patients can change during

the academic year. But recall that attendings see more patients in July through September, when the experience cost is greatest

(Figure 4). Figure 5 shows that average length of stay is unchanged throughout the academic year as a result of the patient

allocation strategy. This method of reducing the impact of cohort turnover complements the investments in infrastructure

studied by Song, et al. (2016) and Hausknecht and Trevor (2011), such as better nurses, a transition period for continuing

residents in June prior to turnover, and better attending supervision. Hospitals can also strategically allocate patients to physi-

cians of varying skill in order to maintain average outcomes. Notably, unlike better infrastructure and training practices, this

method is an operational choice that does not require costly investment.

Broadly, resident progress for complex patients can be divided into two categories: patient-relevant and not patient-

relevant. The main patient-relevant change is complex patients’ length of stay in the ED, which decreases by approximately

9.2% over the four-year program. Crucial patient outcomes, as measured through ED readmissions, are unchanged. The time

to first order does decrease, but the average magnitude is only about five minutes, so it is relatively unimportant. Patients are

not affected by who signs orders for them, so the fraction of orders signed by the resident is not a patient-relevant outcome.

Arguably, they are also relatively insensitive to the number of orders signed, insofar as it does not affect their outcomes and the

change in out-of-pocket cost is small due to insurance coverage. It is also ambiguous whether the hospital desires a reduction

in orders signed as this depends on how the payer will reimburse them. I return to reimbursements in the first counterfactual.

Therefore, the training environment can be described as follows: residents are more or less capable of treating simple pa-

tients when they begin the residency program. However, they need to learn how to diagnose and treat complex patients, but the

only way to learn is to learn by doing: by seeing complex patients. Attendings are aware of this, and also of the primary trade-

off: inexperienced residents are slower than experienced residents. Therefore, the cost of training an inexperienced resident is
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Figure 5: Average Length of Stay, Complex Patients
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Notes: This figure plots summary statistics of patient length of stay over the four quarters of the academic year for patients seen by EM
residents and attending physicians. These are raw summary statistics without any patient or physician controls. The median ED length
of stay is very stable with respect to academic quarter. The mean is slightly less stable, but that is driven by the top 25 percent of patient
encounters.

greater than the cost of training a more experienced resident. But because learning is concave, inexperienced residents learn

more from seeing each patient. Furthermore, there is additional time left in the program for the hospital to benefit from their

increased skill compared to more senior residents. Therefore, the benefits of training inexperienced residents may be greater

than the benefits of training experienced residents. The hospital must take these trade-offs into account and strategically al-

locate complex and simple patients to inexperienced residents, experienced residents, and attendings working independently

in order to maximize the discounted sum of its stream of payoffs. I formally describe and estimate the nonprofit teaching

hospital’s dynamic optimization problem in the next sections.

5 Dynamic Framework

In this section, I present a dynamic model of patient allocation. It is necessary to consider dynamics because I am interested

in estimating how the hospital allocates patients to trade off current care quantity and quality and future care quantity and

quality via training. Unless the hospital acts myopically, a static model cannot capture these trade offs because it does not take

into account future benefits of training. In other words, forward-looking hospitals take opportunity costs and future benefits

into account when optimizing patient allocation. The dynamic choice model is a discrete-time, infinite-horizon model, where

the state-space, resident skill, evolves akin to overlapping-generations models.

Each shift, attendings first observe the the skill of residents who were assigned to work. An infinitesimally divisible unit

mass of complex patients arrives and attendings choose a share of patients to assign to each resident and themselves. Attendings

help residents see patients and may also see some patients independently. Patient utility, a function of length of stay and

therefore a function of resident skill, is realized. At the end of the shift, resident skill increases by the share of patients they

saw. Each July 1, 4th years graduate and are replaced by new 1st years with zero skill. Attending skill is fixed.

This means that skill X is a four-dimensional vector where each element represents the experience of one of the four
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resident cohorts–first years, second years, third years, and fourth years. I do not need to track attending skill because it is fixed.

Within the academic year, skill in the next period is simply skill in the current period plus the share of patients seen in the

current period. On July 1, the fourth years graduate, the continuing three cohorts are promoted, and the new first years who

join enter with zero skill. This structure for the evolution of skill is similar to the structure in Bloesch and Weber (2023) and

Jovanovic (2014).

The hospital’s choice of patient allocation share is the path of allocations {St}∞t=0 that maximizes

∞∑
t=0

βt[u(St|Xt) + εSt]

subject to Xt+1 =

(0, xt1 + st1, xt2 + st2, xt3 + st3) if t is the end of an academic year

Xt + St otherwise

(2)

Flow utility u is a function of the choice of patient allocation shares in period t and is conditional on the state of resident

skill Xt and also includes a component that is observable to the hospital staff but not to the econometrician, εSt. This term is

different for every allocation choice S and period t and could reflect things such as congestion or features of the patient that

make them particularly suitable or costly for training that I do not observe.

This setup leads to the standard Bellman equation describing the value of being in any particular state X given by

V (X,AY (t)) = Eε

[
max
S

{u(S|X) + εSt + βV (X ′, AY (t+ 1))}
]

(3)

where I now explicitly separate out the resident’s knowledge state X from the relative time within the academic year AY (t).

I do this to make clear that the value of being in state X differs based on when in the academic year the current period t is.

That this should affect the value of being in knowledge state X is intuitive: assume that each period t is a day and consider the

state in which all residents have zero skill: X = [0, 0, 0, 0]. In this case, it is far less undesirable for the hospital to be in this

state in the first day of the academic year (AY = 1), when it can still train the residents, than it would be for the hospital to

be in this state on the final day of the academic year (AY = 365), where the training utility for the senior residents is about

to be realized.

The model is very general and can accommodate any objective function. Motivated by the stable average patient length of

stay in the data shown in Figure 5 and the finding that length of stay is the main patient-relevant outcome that improves with

experience, I consider a utility function where the hospital maximizes utility from training subject to a lower bound of utility

from average patient length of stay.

max
S

∞∑
t=0

βt[K(St;Xt, AY (t)) + εSt]

such that L(St;Xt) ≥ L∗ for all t

(4)

L is the hospital’s utility from patient length of stay and is the average length of stay utility f for patients, given allocation

S and skill X .
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L(St;Xt) =

4∑
c=1

stcf(xtc) +

(
1−

4∑
c=1

stc

)
f(xA) (5)

This is simply the share of patients allocated to the residents in each cohort c ∈ {1, 2, 3, 4} and attendings in each period t,

times the length of stay utility f for providers with each skill. Length of stay utility f is increasing and concave in provider skill

x. Given the hospital’s choice of L∗, the hospital conditionally maximizes the discounted sum of K , the utility from training.

The minimum quality threshold L∗ must be satisfied in every period and is to be estimated.

Flow utility from training K is the cumulative skill of the graduating senior residents after they graduate. That is,

K(St;Xt, AY (t)) =

f(xt4 + st4) if t is the end of an academic year

0 otherwise
(6)

In this specification, K is only nonzero in the period just before graduation. Note does this does not automatically mean

the hospital chooses not to train if it is not in the final period because the value function V (X,AY (t)) will generally be

increasing in the state X within each quarter: higher levels of skill at any point enable the residents to achieve a higher skill

upon graduation. It only means that the hospital does not directly derive utility from resident skill within the academic year–it

does not benefit from increased resident skill within the academic year beyond its effect on length of stay utility L.

This model nests many potential theoretical models of hospital behavior. First, patients clearly demand care quality and

may view speed of care as an important component of quality. Second, given the time cost of training, teaching hospitals face a

trade-off between patient revenue and training. That said, many hospital administrators view training as the more important

goal: “Trustees and administrators of teaching hospitals were charged with making their institutions academic leaders, not fi-

nancial profit-centers. Fiscal responsibility was required for the institutions to do good work, but ultimately teaching hospitals

were measured by their academic and professional accomplishments rather than their balance sheets” (Ludmerer, 2005). The

model is able to accommodate the full range of potential weights between revenue and training. SettingL∗ = −∞ represents

the extreme where hospitals only care about maximizing training. On the other extreme, if they only care about care quality

or revenue, then they would choose L∗ corresponding to the level of quality that would be provided if attendings provided

all care independently such that training is impossible if the quality constraint is to be achieved. Convex combinations of the

two objectives are accommodated with intermediate values of L∗.

This objective function is similar to the canonical specifications of Newhouse (1970) and Lakdawalla and Philipson (1998).

I include revenue through the hospital utility channel, which is a function of patient length of stay. But length of stay is

inextricably linked with revenue: in general, hospitals receive more revenue for each additional patient they see. Because facility

size is fixed, the only way to increase revenue is to increase patient throughput via shorter length of stay. I do not separately

include revenue to avoid double-counting care quality and revenue. In Appendix B, I consider an alternative flow utility

function where the hospital maximizes a weighted sum of throughput and training, with the weight to be estimated, but

reject it because it is inconsistent with the data: the optimal patient assignment rule does not result in a stable steady-state.

Note that even with constrained maximization, the dynamic problem does not reduce to a static problem. This is because

training today and training tomorrow are intertemporal complements. More training today means that residents are faster
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tomorrow, and if residents are faster tomorrow, then the cost of additional training tomorrow is lower and more training is

possible. Therefore, the myopic or static approach of maximizing the senior cohort’s training and ignoring the junior cohort

in each period is not optimal. With that approach, training for the current seniors will be maximized, but future cohorts

will suffer. Instead, the hospital must take into account the intertemporal complementarities and train both cohorts in every

period. The optimal division of training across cohorts and time is the result of solving the dynamic problem.

Next, I describe how the model incorporates the key trade-off between care quality and training. For each level of mini-

mum patient care utilityL∗, there is a corresponding maximum level of training that can be achieved. Therefore, one way that

the hospital can control the trade-off between care quality and training is by tightening or relaxing the care quality threshold.

If the hospital relaxes the care quality threshold, then more patients can be allocated to slow, inexperienced residents, who will

then become faster in later periods and have higher skill upon graduation. Increasing attending skill xA has a similar effect

as relaxing the threshold L∗. Faster attendings allow for additional patients to be allocated to lower-skilled residents while

maintaining mean care quality above L∗. Finally, if the rate of learning, or the slope of care utility with respect to skill df
dx ,

increases, then the benefits of patient allocation to residents increase. In this case, the hospital will desire to allocate additional

patients to residents, but the degree to which it can do so is limited by the quality constraint L∗. In the first counterfactual,

I quantify the amount that training decreases when L∗ is tightened and consider the effectiveness of mitigating changes such

as increasing attending skill and increasing the rate of learning.

Because the hospital maximizes training subject to the quality constraint, it maximizes the sum of discounted outcomes

of graduating residents and the patients the residents see in the future. But the objective is one of pure efficiency: if there is

a disruption to training that results in one cohort being trained less than the steady-state, the hospital will not take action to

“smooth out” resident skill across cohorts beyond what is optimal given the concavity of training utility K . The shape of the

optimal training function for each cohort given the skill of continuing cohorts and the corresponding impulse response func-

tion govern how many future cohorts are affected by disruptions to a single cohort’s training. These are empirical questions

where the answers may vary based on the estimated parameters of the model. I quantify the impact in the second counter-

factual and consider how one-time changes to the learning environment, such as a temporary relaxation of L∗, increase in

attending skill, and increase in the rate of learning mitigate the impact of a training disruption.

6 Estimation and Identification

6.1 Simplifying Assumptions and Parameterizations

In order to make progress, I make some simplifying assumptions and parameterizations that keep the problem manageable

and facilitate estimation. I describe these assumptions and the rationale behind them in this subsection.

The first set of simplifying assumptions I make keeps the state-space and action-space manageable. I assume that the

program lasts for two years, so that there are only two cohorts: new residents, or “juniors,” who I denote with subscript j, and

residents who will graduate at the end of the academic year, or “seniors,” who I denote with subscript s. Hence, c ∈ {j, s}.

I further assume that there is no within-cohort variation in skill. I take the time period t to be a quarter of the academic year,

meaning that AY (t) ∈ {1, 2, 3, 4} returns the quarter of the academic year t belongs to. Without loss of generality, I impose
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that a mass of measure 0.25 complex patients arrives each quarter, so that each academic year a unit mass of patients arrives.

Consequently, the maximum steady-state value of resident knowledge is 1.0, achieved when every patient is assigned to one of

the cohorts. I discretize both the state space of resident knowledge and the choice variable of the share of patients assigned to

each cohort and to attendings working independently.

These simplifications are necessary for the following reasons. First, managing a continuous choice of patient share and

experience is intractable when taking first-order conditions is not possible, which applies here because the value function is

unknown (V in Equation (3)). Instead, I consider an interval of knowledge space [0.01, 1.2] and discretize it into 250 evenly-

spaced values. I choose 0.01 as the starting value because residents begin transitioning into the program in June prior to their

first year and they see a share of complex patients that is equivalent to about 0.01 when dividing by the full quarter. This is

also necessary because I need a finite value for the natural logarithm of experience. I censor the upper bound of the knowledge

space to 1.2 because the maximum steady-state allocation for rising senior residents is 1.0 (achieved if every patient in every

quarter is assigned to them). I choose 1.2 rather than 1.0 because this reduces estimation error when rising senior skill is near

1.0: otherwise, the hospital will begin allocating fewer patients to senior residents because it cannot benefit from the increased

skill. For example, if the upper bound was 1.0 and rising seniors had 0.9 starting knowledge, the hospital’s incentives to allocate

more than 0.1 patients to the seniors is drastically reduced because there is no additional training benefit to doing so. In keeping

with the discretization of the state-space, I constrain the hospital to dividing the mass of arriving patients into increments that

correspond to the grid of valid knowledge values. This means the hospital chooses one of 52 values evenly spaced from 0 to

0.25 to allocate to each cohort and to the attendings such that the sum of allocations to all providers equals 0.25. The full

state-space must contain one dimension for each cohort, and must have one such array for each time period.19 Even with just

two cohorts and time in quarters, the state space array with my discretization has dimension [250, 250, 4].

The second set of assumptions concerns the steady-state. I assume that the hospital is in the steady-state and that the

steady-state is such that training each year is identical to training every other year. The first assumption facilitates estimation

because it does not require me to infer the skill of the rising seniors–this is not data because I do not observe their full patient

history. The assumption of a stable steady-state is consistent with the patient assignment data. In Appendix Figure A3, I

show that patient assignment shares are similar for each class across the two years of data, suggesting that cohorts are treated

similarly. It also is consistent with the intuition that a teaching hospital would treat all cohorts similarly. The assumption rules

out models and parameters where in the optimal solution the hospital alternates between training cohorts that enter during

even years and ignoring the cohorts that enter on odd years.

Estimation proceeds in two steps in the spirit of Hotz and Miller (1993), Bajari, et al. (2007), and Pakes, et al. (2007). The

unknowns and methodology are summarized in Table 4 Panel (a). In the first, “offline,” step, I estimate the parameters relating

to the learning rate {α0, α1} using OLS in the panel data, and infer attending speedxA using the estimates α̂. Then, for three

candidate values of the discount rate20 β, I find via iteration the lower bound on quality in the utility function given by

Equation (4) that produces optimal patient assignment shares most similar to the observed shares. I consider three functional

forms for the length of stay flow utility f that vary in concavity: linear, quadratic, and log, as delineated in Table 4 Panel (b).
19This is because the value to the hospital of any level of resident skill is potentially different depending on when in the academic year it is.
20I choose not to estimate the discount rate, which is a common choice in the dynamic model literature. For instance, Pakes, et al. (2007) writes, “We

usually think that the prior information we have on δ [the discount rate] is likely to swamp the information on δ available from estimating an entry model.”
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Table 4: Summary of Estimation Parameterizations and Methodology

(a) Parameters to Estimate and Methodology

Category Unknowns Estimation Methodology

Learning rate {α0, α1} OLS in panel data, “offline”
Attending speed xA Back out from panel data using α̂
Discount rate β Calibrated; yearly β = {0.90, 0.95, 0.99}
Weight on quality vs. training ϕ Dynamic, match patient shares averages
Lower bound on quality L∗ Dynamic, match patient shares averages

(b) Parameterizations of Length of Stay Utility f

Linear f(x) = −α0x
α1

Quadratic f(x) = −(α0x
α1)2

Log f(x) = log(C − α0x
α1)

Notes: This table enumerates the unknown parameters and the estimation method employed in order to estimate them, as well as the
functional forms for the length of stay utility function f . In Panel (a), the first section lists the parameters to be estimated in “offline” in
panel data without any dynamics. The middle sections shows that the discount rate is calibrated using various reasonable yearly values, as it
is not well-identified in the dynamic model. The final section shows the two parameters that are estimated using the dynamic model and take
the offline parameters as fixed; these come from two different utility functions that the hospital may use. Panel (b) lists the three functional
forms used for the length of stay utility f . Note that the linear and quadratic parameterizations do differ because the shape parameters α
are fixed in the offline estimation. C is a constant chosen to ensure that C−α0x

α1 is positive for all values of skill x. See text for additional
details, as well as Subsection 6.2 for more details on offline estimation and Subsection 6.3 for more details on the dynamic estimation.

Note that the linear and quadratic parameterizations of f differ because the shape parameters α are determined in the offline

estimation.

6.2 Step 1: Offline Parameter Estimation

I begin by estimating the learning parameters outside of the dynamics, or “offline,” via OLS. The goal is to recover how patient

length of stay improves as residents gain experience with complex patients and to estimate the skill of attendings working alone.

Experience is measured as the cumulative fraction of complex patients seen, which is valid when equal numbers of patients

arrive every quarter as in the data. Two factors make this not entirely straightforward. First, I must restrict to the subset of

residents who begin the program during the sample period because I do not observe the resident’s full history of patients seen

otherwise. Second, the residency schedule is such that the residents work at another hospital in the city that I do not have data

from, meaning that I must infer the total fraction of complex patients seen by each resident. I first describe the assumptions I

make and then the tests I do in order to test the validity of the assumptions.

The coefficients recovered by OLS are unbiased under the same assumptions on omitted variables as outlined in Section

4. Two additional assumptions are necessary in this setting. First, I assume that the natural logarithm is the correct functional

form for resident progress with respect to the cumulative fraction of complex patients seen. Second, I assume that patient

assignment inference is in expectation correct. In other words, residents who see “excess” patients relative to their peers at the

hospital from which I have data also see similar proportions of “excess” patients at the other location. Both assumptions are
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fundamentally untestable but I offer arguments in favor of accepting them.

First, to test the validity of the functional form assumption, I compare the quarterly patient share results for the subset of

residents with the results using years in the program as the measure for experience. The rationale behind this is that years in the

program is a “reduced-form” measure of share of complex patients, as much of the variation is in the time-series rather than

in the cross-section. I test the validity of my assumptions in Table 5 by seeing if the results for continuous tenure are similar to

that of quarterly fraction of patients seen.

Next, because UCSF EM residents work in two locations but I only have data from one, I must infer patient assignment at

the other location. The assumption I make is that patient assignment at the other location (Zuckerberg San Francisco General

Hospital, ZSFG) mirrors patient assignment at the observed location (UCSF). In other words, if a resident sees 12% of patients

at UCSF within a period, I assume they are also seeing 12% of patients at ZSFG. Importantly, this means that attendings are

not assigning patients in a mean-reverting manner or that observed differences at UCSF are not magnified or diminished at

ZSFG.

I find evidence consistent with this assumption in Appendix Table A6, which shows that the standard deviation of com-

plex patients seen per shift is relatively stable across the academic year. The rationale is that if residents were assigned more

patients at UCSF to “make up” for seeing fewer patients at ZSFG for exogenous reasons such as ED congestion, then I would

expect to see more dispersion in the number of patients per shift in earlier academic quarters compared to later quarters. This

is because of the law of large numbers: in later quarters, variation in patients seen due to exogenous factors should be more

similar across residents and any additional variation will have a smaller impact on the total number of patients seen. Further-

more, I believe factors such as the ad-hoc team structure and variation in congestion and patient arrivals make this assumption

reasonable, as it is difficult for the rotating attendings to know the resident’s history and adjust their assignment instructions

accordingly.21 To lessen the impact of this assumption as well as differences due to exogenous factors such as congestion, I

use as the measure of patient-specific experience the average of complex patients seen during the calendar quarter. This mea-

sure has considerably less variation than experience at the two-week level, but still contains some variation, as can bee seen in

Appendix Figure A4.

Now, I describe how I infer attending skill with the learning parameters in hand. Conceptually, this is simple as I observe

the length of stay for complex patients seen by attending physicians and I know the functional form of learning, so I can just

take the inverse of that function. However, the inclusion of physician fixed effects makes this complicated as the concept of

the regression constant is not well-defined. Therefore, what I do is I infer attending skill for every estimated physician fixed

effect and patient seen by an attending, and use the grand mean of the estimates as the estimate for attending skill.

6.3 Step 2: Dynamic Parameters

The goal of estimation is to find the unknown parameter L∗ that gives the best fit between the model-predicted optimal

quarterly patient shares and the observed quarterly patient shares. The metric of fit used is RMSE, with each quarter receiving

equal weight. In other words, I find the value of L∗ that minimizes:
21According to EM residents at UCSF, many decisions regarding progress are made at the cohort level. For example, at the beginning of second year all

residents are expected to take on additional patients and there is limited “personalization” of this directive based on individual progress. This is unsurprising
because of the ad-hoc team status and because there are 60 EM residents for the various attendings to keep track of.
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4∑
t=1

∑
r∈{j,s,a}

√
(str −MSS(L∗;β)tr)2 (7)

where the subscripts j, s, and a represent the shares assigned to each role: the junior resident, senior resident, and attending.

st are the observed patient allocation shares, andMSSt is the model-predicted steady-state shares given the parameterL∗ and

discount rate β in period t.

In order to find the value of L∗ that minimizes Equation (7), I perform a grid search over values of L∗. For each value of

L∗ and choice of β, I first perform value function iteration on Equation (3) in order to solve for V (X, q;L∗, β), the value of

being in knowledge state X in academic quarter q given L∗ and β. I then use the estimated V (X, q;L∗, β) in conjunction

with the flow utility K to find the optimal patient allocation choice S for each X and quarter q: S(X, q;L∗, β). Finally,

I find the steady-state given the allocation choices S. That is, I search for a value of rising senior knowledge
∑t′+4

t=t′ s
∗
tj , the

cumulative share of patients seen in their first year, such that the optimal training results in the new cohort of junior residents

finishes the first year with the same knowledge. In my notation, I search for
∑t′+4

t=t′ s
∗
tj that satisfies for all t′:

t′+4∑
t=t′

s∗tj =

t′+8∑
t=t′+5

S(X∗
t , q(t);L

∗, β)j

such that X∗
t+1 = X∗

t + S(X∗
t , q(t);L

∗, β)

and t′ is the first quarter of an academic year

(8)

The left hand side is the starting knowledge of the rising seniors, which is equal to the cumulative share of patients seen in

their first year. The right hand side is the sum of patient shares seen by the new juniors in the next academic year, because S is

the function that maps knowledge X and time q to a vector of optimal patient assignment decisions and skill X accumulates

in the usual way.

I iterate until the average L2-norm (Euclidean distance) between successive elements of the value function is less than

10−6. Although the grid search over possible values of L∗ is slightly cumbersome, this method has the advantage that I in

theory do not risk finding a local minimum rather than the global minimum. In practice, I begin with a relatively coarse grid

and perform a finer grid search around the minimum given by the coarse grid.

7 Results

In this section, I first present and discuss estimates of the offline estimation and provide evidence in support of my assumptions.

Then, I discuss the results for the dynamic model.

Results of the offline OLS estimation of the learning parameters are in Table 5. My preferred estimates are the bolded set in

the rightmost column, which are the results using the natural logarithm of quarterly patient share with physician fixed effects

and patient controls. Starting from the bottom row, the results suggest that the average attending physician has skill similar to

a resident with a cumulative experience share of 0.89 patients (recall that a mass of 1 patient arrives each year). While this may

be lower than expected, this measure includes interruptions to attending speed due to supervisory duties so it is not a measure
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of pure attending skill. Next, for learning speed, the results suggest that for each 1% increase in cumulative quarterly patient

share, patient length of stay will decrease by about 0.04%.

The remaining columns of Table 5 are tests of the assumptions necessary for the patient share results to be valid. I compare

those estimates to estimates from the full sample of residents and for continuous measures of experience. The first pair of

columns presents the results using years in the program as a continuous measure and for the full sample of residents, which

represent the baseline. Next, I restrict to full history residents and find minimal changes in the estimated coefficients. Coars-

ening the years of experience measure to quarterly snapshots results in coefficient estimates of increased magnitude, but the

standard errors are large enough that I cannot reject that they are equal to the coefficients from the continuous measures. Sim-

ilarly, changing the measure of experience to patient share does not create a large difference in the estimates. The estimated

attending skill is similar for all specifications other than the full resident sample, which I believe is due to some imprecisely

estimated resident fixed effects that have outsize influence on the grand mean of inferred attending skill. Values across the

other specifications with patient controls are all similar.

Table 5: Offline Parameter Estimates of Learning Speed and Attending Skill

log(Patient Length of Stay, Hours)
Experience Type Tenure (continuous) Tenure (quarterly) Patient Share (quarterly)

α1: log(“Experience”) -0.030 -0.050 -0.073 -0.059 -0.127 -0.105 -0.054 -0.043
(0.013) (0.015) (0.015) (0.019) (0.029) (0.036) (0.012) (0.015)

α0: Constant 1.674 1.692 1.652 1.694 1.665 1.711 1.606 1.623
(0.013) (0.025) (0.025) (0.030)

Sample All Full History Residents

User ID and Patient Ctrls Y Y Y Y
Observations 11,520 11,520 1,202 1,202 1,202 1,202 1,202 1,202
Inferred xA 1.47 1.39 0.86 0.88 1.02 0.77 0.37 0.89

Notes: This table shows the results of the offline estimates for the parameters governing learning speed as well as the value of attending
skill inferred using these estimates. The bolded estimates in the final column are what are used in the dynamic estimation as they use the
desired measure of experience: share of complex patient seen. This measure is only available for residents who begin the program during the
sample (the 2018 and 2019 cohorts). In order to test that this sample of residents is not significantly different from the full sample and that
discretizing experience to quarterly intervals similarly does not result in different estimates, I begin with the full sample of residents and a
continuous measure related to patient share: years in the program. This first pair of regressions is similar to the regressions in Table 3. I then
restrict to the 2018 and 2019 cohorts and find that the coefficients do not change much in the specification with physician fixed effects and
patient controls. Similarly, I cannot reject equality of coefficients when I only allow tenure to change each quarter, and again when using
the quarterly patient share definition of experience. Standard errors are clustered by physician in the first two columns but are the greater
of the clustered and robust otherwise because there are fewer than 40 physicians.

Results for the dynamic model are similar across specifications and discount rates. Regardless of the specification or dis-

count rate, the estimated lower bound, converted from utils into hours, is always around 5.33 hours per patient. The model

that fits the data best is the specification with quadratic utility from length of stay and a yearly discount rate of β = 0.95. Full

results can be seen in Appendix Table A5. The model fits the qualitative patterns of increasing allocation to first year residents

and decreasing allocation to attendings well, but the gradient for both is steeper than observed in the data. This can be seen in

Appendix Figure A5.
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I next evaluate model fit by examining how well it fits non-targeted moments. Specifically, I examine how the length of

stay predictions compare to length of stay averages in the data. First, I examine the average length of stay across the academic

year. The estimated quality bound of 5.33 hours is less than the raw mean and median length of stay in the data. The reason

it differs is related to the fact that the inferred constant is using the set of first year residents, but the data contains additional

residents that are not used in the estimation. Therefore, when assessing model fit, I will focus on matches with changes over

calendar time. The model predicts that length of stay is stable over the academic year, as the quality bound binds in every

quarter. Figure 6 Panel (a) shows that the median ED length of stay is very stable with respect to academic quarter, just as

the model predicts. The mean shows more movement, but that is driven by the top 25 percent of encounters and potentially

related to encounters where patients were in worse condition than expected or the affected by the arrival of a code patient

in critical condition who demanded the attention of the entire ED. Next, I examine how average length of stay varies across

quarters of experience, and compare it to the model predicted values. Figure 6 Panel (b) shows that see that average length of

stay by resident experience predicted by the model has similar shape as the median length of stay in the data. The similarities

between average length of stay in the data and predicted length of stay in the model were not a moment that was targeted in

the estimation–only patient share assignment was–and the comparisons give me more confidence in the estimates.

Figure 6: Model Fit: Non-Targeted Moments

(a) Average Length of Stay
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(b) Average Length of Stay by Experience

5

5.5

6

6.5

ED
 L

en
gt

h 
of

 S
ta

y,
 H

ou
rs

1 2 3 4 5 6 7 8
Quarters of Experience

Data (Median) Model Prediction

Notes: These figures show how well the model fits the non-targeted moments relating to patient length of stay. In Panel (a), a reproduction
of Figure 4, we see that the median ED length of stay is very stable with respect to academic quarter, just as the model predicts. The mean
is slightly less stable, but that is driven by the top 25 percent of encounters. In Panel (b), we see that average length of stay by experience has
approximately the same shape as the median length of stay for residents with each level of experience, as well as attendings who in the figure
have “experience” equal to 9 quarters. All of the empirical averages shown are raw averages without any patient or physician controls.

8 Counterfactuals

I use the model to assess the consequences of a policy change and of a training disruption on both patient care quality and

resident skill. In addition to quantifying the impact of the changes, I consider the effectiveness of various remedies that the

hospital may enact in order to counteract the effects of the counterfactual changes.

The first remedy I consider is an increase in the speed at which attendings see patients independently, which in the model

is represented byxA. This is a feasible action because it does not necessarily require that the hospital hire higher-skilled attend-
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ings. Instead, they can simply staff more attending physicians on each shift. This works because xA includes the supervision

portion of the attending’s duties. If there are additional attendings working on each shift, then supervisory duties will be split

among more physicians, thereby reducing the number of disruptions each attending faces when caring for patients individ-

ually. This will reduce length of stay for patients assigned to attendings and increase their effective speed xA. This remedy is

also realistic: a similar change was proposed by the Institute of Medicine in 2009: they estimated that $1.7 billion was required

to improve residency, with the bulk of the spending for more providers to assume some of the patient load currently seen by

residents, thereby allowing them more time to reflect, study, and learn (Ulmer, et al., 2009).

Second, I consider an increase in the learning rate of residents. This is potentially more difficult to implement because

it would likely involve redesigning the curriculum or partnering with additional hospitals so that residents see additional pa-

tients.22 On the other hand, it could also have significant returns because residency shapes the habits and approaches that

physicians will continue to use throughout their careers (Ludmerer, 2015).

For the first counterfactual, I consider permanent changes, but in the second counterfactual, the changes are for one period

only. In the second counterfactual, I also explore the effectiveness of a temporary relaxing of the care quality constraint L∗.

To simulate the counterfactuals, I change the relevant parameters and re-solve the model with other parameters held fixed. I

find the new optimal patient assignment function (both counterfactuals) and the new steady-state (first counterfactual only)

following the same procedure as outlined in Section 6.3.

The two teaching outcomes I consider are average patient length of stay and the total number of patients seen over the

resident’s career. For now, I make the extreme assumption that no further learning occurs after the resident graduates from the

program.23 Under this assumption, calculating average patient length of stay is straightforward: it is simply the average length

of stay given by the resident’s skill upon graduation. This is equivalent to the intensive margin of patient utility: for each

patient the resident sees, what is the difference in their length of stay? Estimating the total number of patients seen requires

making additional assumptions. I assume that graduates see 8
α0Xα1

patients per shift, where X is the skill they leave residency

with, and that they go on to work 18 8-hour shifts per month (AMA, 2017) for 30 years. Differences in total patients seen

represent the extensive margin of the change.

8.1 Increasing the Bound on Quality

In the first counterfactual, the hospital decides to increase the lower bound of care quality. In the model, this is governed by an

increase in L∗. There are real reasons for why hospital administrators may choose to make this change. The first is that length

of stay is an important part of Medicare’s Hospital Report Cards.24 Hospital administrators may care about these ratings both

because higher ratings help attract more patients and for intrinsic or reputational concerns (Kolstad, 2013). The second may

be due to payment reform, which is a heavily-discussed policy lever to reduce healthcare costs (see McClellan, 2011). I next

explain how payment reform may interact with the hospital’s choice of care quality bound L∗.
22EM Residents typically are not constrained by the ACGME’s hours limit so this change would be legal, but it ignores general equilibrium effects, such

as the possibility of slower learning due to increased fatigue or a change in selection into specialties (cf. Wasserman, 2023).
23In progress is a version where graduating residents learn at half the speed as they did during residency. This approximation takes into account the facts

that attendings work fewer shifts per month than residents and they no longer have formal supervision for every patient.
24See the “Timely and Effective Care” subsection of Medicare’s Care Compare website (accessed October 25, 2023): https://www.medicare.gov/care-

compare/
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Generally, payments from both private and public insurers have been trending away from the traditional fee-for-service

(FFS) system to alternatives such as value-based payments and capitated, prospective payment systems (PPS). Under FFS,

providers are paid for every procedure, order, and service they provide to the patient. One of the issues with this system is

that providers are not incentivized to reduce utilization or cost and have financial incentives to provide marginally necessary

care (cf. Marmor and Gordon, 2021). Two leading alternatives are value-based care and PPS. In value-based care, providers are

paid more if they realize better quality outcomes regardless of utilization, for example, for lower rates of complications from

surgery or shorter ED length of stay. Because payment is independent of utilization, value-based care incentivizes physicians

to reduce cost and improve quality. PPS works similarly in that providers are paid the same amount for every patient type

regardless of utilization, so again providers have incentives to reduce costs.

Issues may arise for teaching hospitals if the reimbursement rates for value-based care and PPS are set uniformly across

hospital types. An example would be if under the two systems, the average hospital’s revenue is identical. Teaching hospitals

would lose revenue due to a change like this because they tend to do poorly on many typical quality and efficiency metrics

(Kocher and Wachter, 2023). Furthermore, teaching hospitals currently have very high FFS reimbursement rates, estimated at

10-20% above FFS payments at non-teaching hospitals, although quality of care is higher for some patient types, which offsets

the additional cost somewhat (Sloan, 2021). In any case, if the switch from FFS to PPS or value-based care occurs without

sufficient accommodations for teaching hospitals, they would stand to lose significant revenue from patient care. This is the

spirit motivating the first counterfactual.

Consider a very simple payment model where instead of being paid for each hour with patients (similar to FFS), hospitals

are instead paid a fixed amount for each patient (similar to PPS). Further assume that all hospitals began with the same FFS

rates and that the PPS rate is set so that the average hospital in the nation does not experience a change in revenue. My results

suggest that UCSF could see at least 5% more patients each day if they did not train at all and instead had attendings see all of

the patients.25 Therefore, under this simple payment structure, they would lose 5% of revenue.26 The hospital could recover

some of the lost revenue by increasing patient throughput via increasing the quality constraint L∗. Particularly in the short

run, the hospital must reduce training since residents are slower than attendings in order to increase throughput, and this is

precisely what occurred in the 1980s when the first PPS reforms were implemented (Ludmerer, 2015). However, there are two

mitigating actions the hospital can take. First, they could increase the rate of learning α1 so that residents gain more skill with

each patient seen. Second, they could increase the speed of attendings seeing patients independently. In the counterfactual, I

assume that the hospital chooses to become 2% faster at caring for complex patients.

Table 6 shows the impact of the increase in the patient quality constraint alone and in combination with mitigating ac-

tions. The figures presented compare the new steady-state with the current steady-state, and ignores contributions to revenue,

patients seen, and minutes per patient during the transition period. The first row reports current outcomes. Under the as-

sumptions on speed and shifts worked described above, residents see 10,141 complex patients over the course of their career
25This is calculated from the model predictions for average length of stay during the academic year given optimal patient assignment under the current

parameters, and the inferred value of attending skill. It is a lower bound because the current attending skill measure assumes that attendings also have teaching
and supervisory duties, which would be reduced if the hospital reduced teaching.

26If the teaching hospital had higher FFS reimbursement rates than non-teaching hospitals prior to the policy change, then it would stand to lose even
more revenue. Additionally, while it is true that even in the current world, the hospital could increase revenue by training less, it has chosen not to. This
is because the hospital has chosen L∗ at the current level from maximizing preferences over care quality, quantity, revenue, and teaching. I take this choice
given and do not model it. As long as revenue is a normal good, changes that decrease revenue will cause the hospital to seek ways to increase it.
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and spend 307 minutes per patient. If the hospital adjusts training to increase the length of stay by 2% and makes no further

changes, then in the new steady-state graduating residents see 520 fewer patients during their career and are almost 17 minutes

slower for each individual patient. The 2% gain in teaching hospital revenue from seeing patients faster is paid by the hospital

that employs the resident after graduation because its new physicians are slower, and this cost is almost 17 times larger than the

revenue gain. This future cost is an externality from the teaching hospital’s point of view because it undervalues the future

productivity of their graduating residents when making the decision to reduce training.

However, the social planner can induce the teaching hospital to take mitigating actions and reduce the impact on training

required by the 2% stricter length of stay requirement. For instance, teaching hospitals can increase the speed that attendings

see patients independently by 5%. This is very effective in reducing the difference in counterfactual training from the current

training level, making up 81% of the loss relative to when no other actions are taken. The intuition behind this is that the

hospital desires to maximize training given a constraint, and increasing the speed at which attendings work in effect makes the

constraint less binding. This allows them to increase training while still meeting the quality constraint. On the other hand,

increasing the rate of learning by 5% is much less effective, only allowing the hospital to make up 24% of the loss. This is again

due to the constrained maximization problem faced by the hospital. Although the benefits of training are increased, the hospi-

tal has difficulty taking advantage of this and increasing the fraction of patients allocated to residents because it still must meet

the same care quality constraint in every quarter. In other words, the hospital is not permitted to intertemporally substitute

decreased speed in earlier quarters due to increased allocation of patients to residents with increased speed in later quarters

because residents have gained more skill as it would in the absence of the constraint. Only in the later quarters of the academic

year, when residents who learn faster are more skilled can the hospital actually increase patient allocation relative to current

levels, and even then it is not by much. Finally, taking both actions actually has the effect of improving future outcomes, as

now the hospital is able to take advantage of the increased benefits of faster learning and actually allocate additional patients

to residents.

These results show that small changes in training by the teaching hospital can have outsize effects for future patients and

future employers of residents. It is important for policymakers to consider these externalities when designing payment systems

so that future patients do not end up paying orders of magnitude greater in costs in order to save a little today. Fortunately,

there are feasible and straightforward remedies available that can mitigate these costs. The counterfactual shows that increasing

the speed at which attendings see patients individually by just 5% can recover 81% of the loss in training resulting from a desire

to increase patient throughput by 2%. This can be satisfied by staffing additional attending physicians, which admittedly may

be difficult if general equilibrium effects are considered, but is likely far easier and more effective than finding ways to redesign

the resident curriculum or having them work additional hours in order to learn faster. Another possibility that I have not

discussed is to increase Medicare’s Indirect Medical Education Payment to cover non-Medicare patients. These payments are

a lump-sum bonus paid by Medicare to Medicare PPS academic hospitals, which CMS recognizes have higher costs than non-

teaching hospitals due to the teaching responsibility. Increasing the IME Payments would also be effective as it would decrease

the hospital’s need to gain more revenue from patients due to payment reform, thereby reducing the need to increase patient

throughput by decreasing training.
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Table 6: Quality Bound Changes: Steady-State Counterfactual Resident Training and Mitigating Factors

Plan Revenue “Externality” Lifetime Patients Minutes per Patient

Current Outcomes 10,141 307

Decrease length of stay 2% and...

No other changes -16.7:1 -520 +16.6

Attending Speed +5% -3.1:1 -97 +3.0

Learning Rate +5% -12.7:1 -396 +12.5

Learning Rate +5% & Att +5% +1.8:1 +57 -1.7

Notes: This table shows the loss for future patients of senior residents if UCSF decides to decrease patient length of stay by 2%, adjust the
care quality utility constraint by the corresponding amount, and take the listed mitigating action. The revenue externality captures only the
financial cost and is the ratio of the change in the present value of future patient revenue to the current patient revenue increase due to the
policy change, assuming no changes in reimbursements. For example, if no other changes are taken, the present value of the cost to future
employers of the resident is 16.7 times the additional revenue generated by UCSF by speeding up, because the graduating residents have less
skill. This is in essence the discounted difference in lifetime patients seen and assumes that residents go on to work 18 shifts per month, as is
typical for EM attendings, for 30 years. Lifetime patients is the total difference in patients seen (extensive margin), and minutes per patient
is the length of stay difference for each patient (intensive margin) given graduating resident skill. For now, I make the extreme assumption
that no further learning occurs post-residency.

8.2 Unexpected One-Time Training Disruption

In the second counterfactual, I consider the consequences and effectiveness of policy responses to a one-time, unexpected

disruption in training. This scenario resembles disruptions during the Covid-19 Pandemic, which affected residents in at least

two general ways. First, the composition of patients who went to the hospital changed as patients delayed and avoided both

routine and urgent or emergency care (Czeisler, et al., 2020). This, in addition to the influx of Covid patients, changed the

pool of patients that residents could see and learn from, decreasing effective patient share in every period. Second, medical

workers were under extreme stress during this period (HHS, 2022), which also likely reduced residents’ ability to learn.27

I ask three questions. First, how many incoming classes of residents will the one-time disruption affect through spillovers?

Second, for affected residents, what are the long-run effects of the disruption on their future careers? Third, what temporary

mitigating factors could reduce the impact on residents affected by the training disruption? For simplicity, I assume that future

incoming cohorts are equally skilled as their historical counterparts even though this may be contrary to evidence (Jhajj, et al.,

2022).

Under no additional changes, how long does the hospital take to return to the steady-state of training? The answer to this

question reveals how many incoming classes of residents will be affected and is simply the impulse response function of the

system. In this case, it is very simple and easily inferred from the Optimal Training Function presented in Figure 7 Panel (a).

The figure illustrates the utility-maximizing choice of patient allocation during the incoming cohort’s first year (vertical axis)

as a function of the skill of the rising senior (horizontal axis). The steady-state of the system is when rising senior skill today

is equal to the resulting rising senior skill tomorrow, which occurs at the point which the optimal training function intersects
27As with K-12 education, medical student education during this time also suffered (Jhajj, et al., 2022) so it is reasonable to infer that residents were also

affected.
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Figure 7: Optimal Training Function and Outcomes
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(b) Optimal Training Outcomes for Senior Residents
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Notes: This figure depicts the hospital’s optimal choice of total training for the two cohorts given the training the current senior residents
received in their first year. Panel (a) depicts the total first-year training for tomorrow’s junior residents in their first year given the training the
current senior residents received in their first year. The steady-state is where the optimal training choice intersects with the dotted 45-degree
line. Panel (a) illustrates how for many values of current rising senior resident skill below the steady-state, the hospital chooses to train the
next cohort of junior residents at exactly the steady-state quantity. If today’s rising senior resident skill is greater than the steady-state, the
hospital increases training in a diminishing way, and skill remains elevated for a few periods as it steps back down to the steady-state. The
reason the second kink around 0.25 is not at the steady-state is due to the discount rate: here it is optimal to realize the gains immediately
rather than realize small gains for the next few periods. Panel (b) depicts the hospital’s optimal choice of total training for senior residents
conditional on their skill acquired during their first year. The steady-state is depicted by the vertical line. This figure illustrates that below
the steady-state, there is a very steep gradient in training, but the slope is flatter above the steady-state. When combined with Panel (a), one
notices that below the steady-state the hospital prioritizes training the junior residents to return to the steady-state and trains the seniors
minimally. This is due to the value of training the junior resident in the next period: the higher skilled the junior resident, the more training
both cohorts can receive and still meet the quality constraint.

the 45-degree line (the dashed line in the figure). In the figure, we observe that for most decreases in rising senior skill today,

the hospital trains the incoming cohort exactly as much as it would have if there was no disruption, therefore returning to the

steady-state the very next period. That means that aside from the senior residents at the time of the disruption, the disruption

only affects the continuing cohort of rising seniors and does not affect future incoming residents.

But that does not mean the training disruption has no impact on training: clearly the training of the affected cohort must

be reduced as a result in order to maintain the quality bound. This is exactly what we observe in Figure 7 Panel (b), which

plots the graduating skill of the senior residents as a function of their skill when they become seniors. Below the steady-state,

depicted by the vertical line, there is a very steep gradient in training, but it flattens substantially when rising senior skill exceeds

the previous steady-state. Therefore, even though incoming cohorts are not affected by the one-period training disruption,

senior residents receive drastically less training.

The intuition behind these findings is as follows. Because the rising seniors are less skilled than usual, the hospital is limited

in the total fraction of patients it can assign to residents and maintain the care quality constraint. Therefore, it is very costly

for the hospital to train the disrupted cohort more than the steady-state amount because it not only means that the incoming

cohort receives less training, but also means that future incoming cohorts would also receive less training. The combination
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of the yearly discount factor of β = 0.95 and the concavity of the training utility with respect to patient share means that the

hospital is patient enough to sacrifice training in the current period in order to return to the steady-state immediately, rather

than spreading the cost of the disruption over multiple future periods.

For the counterfactual outcomes, I assume that the result of the disruption is that the affected rising seniors begin the

academic year with half of the steady-state skill, but that the incoming cohort is identical to all other incoming cohorts. For

the temporary changes, I find the optimal patient allocation with the different model parameters and the lower-than-usual

starting value of rising senior skill. Motivated by the previous finding that the hospital returns to the steady-state the very

next period, I consider combinations of six one-time, temporary policy changes: relaxing the care quality bound by 0.25% and

0.5% in length of stay, increasing attending speed by 2.5%, increasing the rate of learning by 2.5%, and combining an increase

in attending speed with either a relaxation of the lower bound or an increase in the learning speed.

Results are in Table 7. As before, I compare outcomes with the steady-state outcomes in lifetime patients seen and minutes

per patient. Those outcomes are represented in the first row of the table. The remaining rows (under the single dividing line)

display the outcomes under various one-time changes when the rising senior class begins with half the knowledge as in the

steady-state. As we saw in Figure 7, there is a significant training cost in the Status Quo–if no other actions are taken. Under

the same assumptions on resident careers as the first counterfactual, residents see 224 fewer complex patients during their

career and spend 7 additional minutes on each patient they see. Temporarily relaxing care quality by 0.25% roughly halves

both decreases, while temporarily relaxing care quality by 0.5% actually makes the affected cohort slightly more skilled than

usual. Attending speed increases again prove to be quite effective as the senior residents recover 88% of the difference in lifetime

patients seen under the Status Quo compared to the steady-state. Similar to before, learning rate increases also have limited

effect. Curiously, increasing attending speed and lowering the care quality threshold is not particularly effective, but as before,

increasing both the attending speed and the learning rate is very effective as now the hospital is able to take advantage of the

increased benefits of training.

This counterfactual shows that a disruption in training for residents has large effects on future patients that the teaching

hospital may not internalize. But as in the first counterfactual, there exist straightforward remedies, and in this case they only

need to be enacted temporarily. If the hospital is willing to temporarily reduce throughput, then a reduction of just 0.5%, or

approximately two minutes, is sufficient for these residents to “catch up.” If that is not acceptable, a small increase in attending

speed of just 2.5% makes up 88% of the difference in training compared to the steady-state. In the event of future disruptions,

both local and national, policymakers should consider stepping in to ensure that resident education does not suffer.

9 Discussion and Conclusion

When profit maximization is not the primary goal, how multi-product nonprofit firms adjust the production of their products

due to changes in revenue from one product is ambiguous. I study nonprofit teaching hospitals, which have the dual role of

providing health services and training the next generation of physicians. Because the teaching component in this environment

requires learning by doing, the hospital faces a trade-off between care quality and teaching. I study how the hospital allocates

complex patients to residents and attendings to make this trade-off. I find that short-run increases in quality achieved with
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Table 7: Training Disruption: Counterfactual Resident Training and Mitigating Factors

Counterfactual Lifetime Patients Minutes per Patient

Steady-State 10,141 307

Status Quo -224 +6.9

Relax L∗ 0.25% -113 +3.4

Relax L∗ 0.5% +23 -0.7

Att Speed +2.5% -26 +0.8

Learning Rate +2.5% -58 +1.8

A.S. ↑ & L∗ ↓ 0.25%† -51 +1.6

A.S. ↑ & Learning +21 -1.6

Notes: This table shows the loss for future patients of senior residents given that their training in their first year was disrupted. I assume
they enter their second year with half of the knowledge they otherwise would have. In the status quo, the hospital does not adjust anything
and behaves as depicted in Figure 7. The other entries show the outcome if the hospital makes a one-time change in behavior as indicated.
The outcomes are relative to the steady-state outcome and compare the total number of patients the physician can see after the graduate
(extensive margin) and the extra time per patient seen (intensive margin). †The combination of increasing attending speed and decreasing
care quality has a benefit not depicted in the table: although outcomes for the affected cohort are not as good as before, the hospital over-
trains the incoming cohort in anticipation of the higher steady-state given by the increase in attending skill. See text and notes to Table 6 for
more details.

reducing training are dwarfed by long-run quality decreases because residents see many patients over the rest of their career.

Policies that use revenue to incentivize quality improvements to current patients such as value-based care and prospective

payment systems are an increasingly popular tool among both public and private insurers (Sokol, 2020). I show that when

designing such policies, policymakers should be aware of potential unintended reductions in teaching: in respose to the de-

crease in revenue, academic hospitals may reduce teaching and the resulting reductions in physician skill may result in costs

for future patients orders of magnitude larger than the savings for current patients.

I examine and quantify these trade-offs in the emergency department of a large, urban teaching hospital. I first investigate

at a granular level the costs of training and find that despite substantial increases in independence and the ability to manage

additional patients simultaneously, there are no differences in patient outcomes or costly resource utilization. I find notable

differences in patient throughput, but only for complex patients who are predicted to require inpatient admission: the median

fourth-year is able to arrive at a disposition decision and complete working up these patients 9.4 % faster than the median first-

year. The improvement in length of stay means that the hospital trades off patient throughput today with patient throughput

tomorrow. To quantify this trade-off, I develop and estimate a dynamic model of training and find that the hospital acts as if it

maximizes training conditional on a minimum average patient throughput level in each quarter. In counterfactuals, I find that

if hospital administrators increase throughput by 2%, the required reduction in training will result in lower future throughput

losses 17 times larger than the current gains. However, there exist simple and feasible changes that can reduce the externality.

For instance, I find that a 5% increase in attending speed would mitigate the training reduction and reduce the future costs by

81%.

35



Even though my focus is on the emergency department of a single, top-ranked teaching hospital, there are key lessons for

the broader healthcare sector. First, the link between throughput and revenue applies to all departments. Second, time is es-

sential for teaching: Ludmerer writes, “Time was the irreducible element of good medical education, whatever clinical setting

happened to be used.” Third, speed is an important quality measure across medical care, even in non-urgent situations. For in-

stance, in the surgical context, it has been shown that longer operative time is associated with increased odds of complications

(Jackson, et al., 2011). Next, although there may be some variation in care correlated with teaching hospital rankings, prior

work has shown that the basic production function of health services does not differ in outcomes with respect to residency

program prestige (Doyle, et al., 2010).

CMS is aware of the increased costs faced by teaching hospitals. The Medicare Prospective Payment System (PPS) includes

a bonus paid to academic hospitals, known as the Indirect Medical Education Payment (IME). Although my findings show

that patient throughput costs may be significant, they should not be used as the sole basis for determining the size of these

payments. I believe that a large part of the reason that patient outcomes and resource utilization do not change with experience

is due to the success of attending supervision. Staffing high-quality attendings can be very expensive, especially when they

are also spending significant time conducting valuable research, and the IME Payments should account for this cost. My

hypothesis is supported by the workflow, in which attendings and residents confer to determine the plan of care for each

patient, as well as the empirical results, which show that resident independence increases most notably and significantly in

the first hour of the patient’s encounter when the plan of care is developed. Further research exploring the ways in which

variation in supervision affects both patient outcomes and teaching quality could be valuable in improving both care quality

and training outcomes. After all, the degree to which policy can improve patient outcomes and reduce costs is reliant on

improvements in physician habits and practice, much of which is taught and absorbed during residency (Ludmerer, 2015).

Finally, while teaching hospitals are a single example of a specialized organization, they constitute an outsize share of

both the economy and individual utility. The United States spent 17.8% of GDP on healthcare in 2021, and in 2019, teaching

hospitals contributed 45% to Health Care and Social Assistance GDP.28 Preserving life and increasing the quality of life, the

main functions of hospitals, are arguably the most important components of individual utility, well-being, and happiness,

and the continued production of high-quality health services requires continued investment in teaching. That said, the model

and empirical strategy can be applied to related settings as many nonprofit institutions are in essence multi-product firms.

Most notably, this group includes research universities, which through their research are principal drivers of innovation in

the modern economy (Lerner, et al., 2023) yet are also responsible for educating undergraduate, professional, and graduate

students. Studying how they make this trade-off and respond to changes in government funding could be a fruitful area for

future research.

28Gunja, et al. (2023) and the author’s calculations using statistics from the BEA and AAMC
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A Prediction of Inpatient Admission

In this section I provide a brief overview of the ex-ante prediction of inpatient admission. The key feature of this prediction

is that only factors that are immutable (e.g. patient age) and determined prior to the physician’s involvement (e.g. abnormal

vital signs upon entry; chief complaint as recorded by the triage nurse) are included in the prediction. Therefore, it is by

construction exogenous to the providers who will subsequently care for the patient.

I use LASSO to select among the large set of ex-ante and immutable patient covariates, with a logit functional form because

inpatient admission is a binary outcome. The predictions fit observed patterns of inpatient admission well: the area under the

receiver operating characteristic curve (AUC) is around 0.97. One way to interpret AUC is that it is the probability that the

model ranks a random positive example more highly than a random negative example. The maximum value is 1, so a value of

0.97 indicates that the model is very successful at predicting the observed outcome.

Similar results are obtained whether the functional form is a linear probability model or a probit.

B Alternative Hospital Objective Function

An alternative flow utility function I consider is one where the hospital maximizes a weighted sum of patient care quality and

resident training.

max
S

∞∑
t=0

βt[ϕL(St;Xt) + (1− ϕ)K(St;Xt, AY (t)) + εSt] (9)

L is the hospital’s utility from length of stay (care quality). This is a function of the allocation of patients St and the state

variable of resident knowledge Xt. K is the hospital’s utility from training (“knowledge”), which depends on the allocation

of patients St, the state variable Xt, and the result of a function AY that maps time t to relative time within the academic

year. The weight on care quality ϕ is to be estimated.

It turns out that the weighted average specification of Equation (9) actually does not result in a stable steady state of

training. Instead, the steady-state utility-maximizing patient allocation is a two-year cycle where every other cohort is trained.

The result holds for all chosen values of the discount rate, as well as all three concavities of utility from length of stay and

making the utility from learning more concave than the utility from patient care. This is because for each cohort, training

today and training tomorrow are intertemporal complements. A larger amount of training today means that the cost of

training tomorrow is decreased because the residents have higher skill. The presence of attending physicians amplifies this

feature: instead of distributing training among the two cohorts, it is better to focus it on one cohort and give the remaining

patients to the attending to maximize patient utility.

To build intuition for this result, consider a model where there is only one period per academic year. In the first year, if the

senior cohort received training in year zero, then it is cheaper to train them further than to train the new cohort, and it is better

for patient outcomes if the hospital allocates patients only between the senior cohort and the attendings. In the second year,

the senior residents have zero skill because they received no training when they were junior residents. The hospital chooses

to ignore them, trains only the new cohort, and gives the remaining patients to the attendings to maximize the patient utility
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portion of utility. Then, in year three, it trains the senior cohort, because it has already trained them in the previous year, and

again ignores the new cohort. Consequently, every other year, both training utility and patient utility are high and we have a

two-year cycle.

C Additional Tables

Table A1: Learning Over Time: Immediate Orders Upon ED Admission

First Order Upon Admission

Years in Program 0.010** 0.010*** 0.013 0.011 0.008 0.011**
(0.005) (0.004) (0.010) (0.008) (0.005) (0.004)

log(Days in Program) 0.006 0.006 0.014 0.008 0.002 0.005
(0.005) (0.004) (0.011) (0.008) (0.005) (0.004)

DepVar Mean 0.138 0.162 0.128
Patient Type All Patients Complex Simple
Controls X X X
Obs 31,628 31,565 8,877 8,853 22,751 22,712

Notes: Separate regressions of a binary indicator for first medical order upon admission to the ED on measures of resident experience,
split by ex-ante predicted patient complexity. This process measure is a complement to the log(Minutes to First Order) outcome in Table 3,
which is undefined when orders are immediate. The dependent variable is equal to one if the first medical order is signed at or before the
patient is moved from the waiting room to an examination room and zero otherwise. Standard errors are clustered by physician. See text
and corresponding Table Notes for additional details.
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Table A2: Learning Over Time: Diagnostic Orders

Any Diagnostic Order log(Diagnostic Orders)

Years in Program -0.001 -0.000 -0.001 -0.001 -0.002 0.002 0.012 0.014 -0.021 -0.014 0.014 0.034***
(0.003) (0.003) (0.002) (0.002) (0.004) (0.004) (0.014) (0.010) (0.016) (0.014) (0.016) (0.012)

log(Days in Program) 0.005 0.004 -0.001 -0.001 0.006 0.007 0.023* 0.010 -0.030** -0.032** 0.024 0.032**
(0.004) (0.003) (0.002) (0.002) (0.006) (0.004) (0.013) (0.011) (0.014) (0.015) (0.016) (0.013)

DepVar Mean 0.939 0.993 0.918 12.067 19.655 9.103
Patient Type All Patients Complex Simple All Patients Complex Simple
Controls X X X X X X
Obs 31,793 31,730 8,930 8,906 22,863 22,824 29,859 29,798 8,871 8,847 20,988 20,951

Notes: This table presents regressions of outcomes related to diagnostic orders signed on two parameterizations of resident experience, split by ex-ante predicted patient complexity. It is similar
to Table 3. Dependent variable means are listed, always in levels. Diagnostic Orders are medical orders primarily for gathering information about the patient, such as lab tests and imaging, rather
than for treating or stabilizing the patient. Any Diagnostic Order Signed is a binary variable equal to one if at least one diagnostic order was signed and zero otherwise. log(Diagnostic Orders
Signed) is the natural logarithm of the number of diagnostic orders signed and is undefined when zero orders are signed (for instance, if the patient required stitches but did not receive an X-Ray
prior to the procedure). Standard errors are clustered by physician. See text and notes to Table 3 for additional details.42



Table A3: When does Supervision Occur and Change for Complex Patients?

Fraction Orders Signed by Resident
Years in Program 0.047*** 0.008 0.010 -0.000

(0.008) (0.011) (0.009) (0.006)
Period 1st Hour 2nd Hour Middle Last Hour
DepVar Mean 0.430 0.505 0.451 0.176
Num Orders 11.8 4.1 11.1 4.3
Obs 9,196 8,632 7,648 9,196

Notes: Regressions of the fraction of orders signed by the resident during various portions of the patient’s stay in the ED on the number
of fractional years in the program. If the patient stay is less than or equal to two hours, the second hour is counted only as part of the Last
Hour. “Middle” includes all hours after hour three and prior to the last hour before inpatient upgrade (for admitted patients) or discharge
(for discharged patients). The dependent variable mean is listed, as is the mean number of orders signed during the period. Most of the
change occurs in the first hour, which is also when the bulk of the orders are signed. I select a similar set of patient covariates as in the binned
scatterplots of Figure 3, but additionally include the number of simultaneous patients managed by the resident and its square. Standard
errors are clustered by physician.

Table A4: Allocation of Complex Patients: Congestion

Patient Assigned to 1st Year Resident
# Complex Pt in ED 0.976 0.972 0.973 0.973

(0.017) (0.018) (0.018) (0.018)
# Pt in Waiting Room 0.986 0.971*** 0.970*** 0.969***

(0.011) (0.010) (0.010) (0.010)
Likely Handoff 0.421**

(0.149)
# other EM1 FE Y Y Y Y
Month FE Y Y Y
Patient Condition FE Y Y
Other Controls Y
Obs 6,903 6,903 6,896 6,896

Notes: Odds ratios reported. Going from the 25th to 75th percentile of patients in the waiting room lowers the probability of assignment
to a first year resident by 15 percentage points. # of other EM1 FE are fixed effects for the number of other first year residents on shift at the
time of patient allocation: clearly it is more likely to assign a patient to a first year resident when there are more of them working. Not shown
are the coefficients for patient condition fixed effects, which include interactions between ex-ante triage nurse estimated severity and chief
complaint. Standard errors are clustered by physician.
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Table A5: Dynamic Results: Full Estimates

Specification β L∗ RMSE L∗ Implied Hrs Graduating Skill (Hrs)

Linear
0.90 -1.335 .0101 5.339 5.112
0.95 -1.335 .0095 5.338 5.116
0.99 -1.332 .0092 5.330 5.113

Quadratic
0.90 -7.144 .0095 5.346 5.112
0.95 -7.144 .0087 5.346 5.112
0.99 -7.139 .0091 5.344 5.112

Log
0.90 0.149 .0110 5.363 5.103
0.95 0.149 .0096 5.361 5.116
0.99 0.149 .0102 5.362 5.108

Notes: This table shows the full estimation results for the three functional forms of hospital utility for patient length of stay and three
values of the discount rate β. The first two columns show the estimated lower bound of patient quality L∗ in utils, as well as the model’s
root mean squared error compared to the observed patient assignment shares. L∗ implied hours coverts the utils to hours, and I also show
the graduating skill of the resident, also in hours per patient. There is not much of a difference between specifications.

Table A6: Distribution of Average Number of Complex Patients Per Shift, by Quarter

Academic Quarter Mean Pt/Shift SD Pt/Shift
1 1.573 .717
2 1.587 .775
3 1.659 .658
4 1.736 .790

Notes: This table shows the mean and standard deviation for the number of complex patients seen per shift by residents during each
academic quarter. The mean increases, as expected (see 2), but the standard deviation is relatively stable. The stability in the standard
deviation suggests that patient allocation patterns are not mean-reverting in the sense that it is likely that allocation patterns are similar in
the hospital where I do not have data from. If they were, then I would expect a lower standard deviation in later academic quarters, where
due to the law of large numbers, variation in patients seen due to exogenous factors such as ED congestion should be more similar across
residents.
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D Additional Figures

Figure A1: Identifying EM Residents Based on Orders Signed

(a) 2017 Cohort
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(b) 2018 Cohort
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Notes: These figures illustrate the discontinuity in total orders signed in the ED and fraction of orders signed in the ED for residents
belonging to two cohorts. Residents are ordered based on the number of ED orders signed, and for each resident both the total number of
orders (blue circles) and fraction of orders (hollow red squares) signed in the ED are plotted. Each vertical pair of markers represents one
individual resident. Panel (a) shows the relationship for the 2017 cohort, whereas Panel (b) shows the relationship for the 2018 cohort. See
text for additional details.

Figure A2: Patients Seen Per Shift

(a) Patients Seen per Shift
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(b) Average Ex-Ante Complexity of Patients
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Notes: Panel (a) shows the number of patients seen per shift split by three groups of ex-ante severity, as assigned by the triage nurse upon
patient arrival. The blue circles represent the most urgent patients, and comprise about 20% of all arriving patients. We see growth in these
complex patients during the first year that levels off after residents enter their second year. The red X’s represent the middle category of
urgency, which comprise about 60% of all patients, and growth continues throughout the program. The hollow green squares represent
the least urgent patients, who comprise the remaining 20% of patients. Growth in these patients is minimal. Panel (b) shows the average
predicted ex-ante complexity of patients assigned to residents in the same categories. The complexity measure corresponds to variation in
patient severity within ESI category and can be thought of as the “intensive margin" of complexity assignment to residents. “Complexity”
is a prediction of patient severity based on ex-ante and immutable patient covariates developed in Chu, et al. (2023). This figure shows that
with the exception of residents in the first six months of the program getting slightly simpler patients in the highest complexity category,
averages are stable across experience. This means that residents are not assigned less complex patients as they increase the number of patients
they see simultaneously with experience.
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Figure A3: Average Fraction of Complex Patients Seen, by Role in Each Calendar Quarter
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Notes: This figure shows the average fraction of complex patients seen by role for each calendar quarter. The figure shows that the shares
are relatively stable across academic years, delineated by the vertical dashed lines, providing evidence supporting the assumption that in the
steady-state, the hospital trains the same amount each academic year. See text and notes to Figure 4 for more details.
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Figure A4: Cross-Sectional Variation in Average Complex Patients Seen per Shift

(a) Two-Week Averages
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(b) Quarterly Averages
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Notes: This figure shows the average number of patients per shift over two different periods of aggregation. Panel (a) shows this over two-
week periods, while Panel (b) shows this over calendar quarters. Each observation is a resident-period and variation is shown separately by
the resident’s year in the program.
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Figure A5: Model Fit by Quarter
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Notes: This figure plots the actual allocation of complex patients with the model predicted allocation. The scale is different than in Figure
4 and Appendix Figure A3 because I have normalized each quarter to have a mass of 0.25 patients. The data are represented by the heavier
lines without markers, and the model predictions are the lighter lines with markers on each quarter. The model fits the qualitative patterns
well but the gradient on patients allocated to first year residents and attendings is steeper than in the data. See text for additional details.
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